
CS3210
Tut & Lab

Concurrency

Two or more tasks can start, run, and complete in overlapping time periods
They might not be running (executing on CPU� at the same instant
Two or more execution flows make progress at the same time by interleaving their
executions or by executing instructions (on CPU� at exactly the same time

Parallelism

Two or more tasks can run (execute) simultaneously at the exact same time.

Processor Arch

Unicore Arch

Levels of parallelism achievable with a single processor:

 Bit-level parallelism → executing on a word
 Instruction-level parallelism

 pipelining (across time): multiple instruction in different stages in the same clock cycle.
Danger: data & control-flow hazards, out-of-order execution → maximum speedup =
number of stages

 superscalar (across space): multiple instructions to pass through the same stage.
Danger: structural hazard (cannot access memory at the same time)

 Thread-level parallelism: multithreading.
 Fine-grained MT � switch after each instruction
 Coarse-grained MT � switch on stalls

 Timeslice MT� switch after a predefined timeslice
 Switch-on-event MT� switch if a processor is waiting for an event
 Simultaneous MT� schedule instructions from different threads in the same cycle.

Processor provide hardware support for thread context �PC, stack, registers) by
duplicating registers

 Process-level parallelism: multiprocessing. Each process needs independent memory
space → use IPC provided by OS.

Flynn's Parallel Arch Taxonomy:

Taxonomy of parallel archs based on the parallelism of instructions and data streams in the
most constrained component of the processor.

 SISD �Single Instruction Single Data): A single stream of instruction. Each instruction work
on single data (uniprocessor)

https://docs.google.com/document/d/1muGiE43c1g2v42--k_-8auIRrG4JP4xAqUOcxrVQfvI/edit

 SIMD� A single stream of instruction. Each instruction works on multiple data. �SSE, AVX
instruction in x86, vector processor) → lock step.

 MISD� multiple instruction stream on same data. (only theoretical)
 MIMD� each Processing Unit �PU� fetch its own instruction and operates on its data. Most

common now.
 Variant �SIMD � MIMD�� Stream processor �NVidia GPUs) → a set of threads executing the

same code �SIMD�. Multiple set of threads executing in parallel �MIMD�.

Multicore arch

 Hierarchical design
Multiple cores share multiple caches, that increase in size from the leaves (separate L1
cache) to the root (shared L2/L3 cache)
All cores share the same common external memory
Examples: standard desktop, server processors, GPU

 Pipelined design: data elements are processed by multiple execution cores in a pipelined
way. (specialized cores, roughly equal process time). E.g. routers / graphics processors

 Networked-based design: cores and their local caches and memories are connected via
an interconnection network

Memory Arch
Memory Latency: amount of time for a memory request to be serviced
Memory Bandwidth: rate at which the memory system can provide data.

Distributed Memory (multicomputers)

Each node is an independent unit (has its own processor, memory, etc)
Physically distributed memory module (memory in a node is private)
Data exchanges using message passing through interconnection network

Shared Memory (multiprocessors)

Access memory through shared memory provider �SMP� which maintains the illusion of
shared memory, and transparent to the program
Data exchanges via shared variables
Differentiation based on
 processor-to-memory delay:

 Uniform Memory Acess �UMA�� more suitable for small number of processors due to
memory contention.

 Non-Uniform Memory Access �NUMA� or distributed shared memory
 presence of a local cache with cache coherence control �CC / NCC�

Problems with shared memory:

 Cache coherence: All processes must agree on the order of reads/writes to the same
memory location X. a.k.a. writes to X must eventually propagate to other processors.

 Memory consistency: concerns with the behaviour of reads/writes to different locations.
There is no guarantee that the order of memory change is the same as the instruction

order

Advantages Disadvantages

No need to partition code / data Need sync constructs

Efficient communication (no need to move
data)

Lack of scalability due to memory
contention

Hybrid� Distributed � Shared Memory

Parallel Programming Models

Parallelism

Parallelism → average number of units of work that can be performed in parallel per unit
time �MIPS / MFLOPS / avg number of threads per second)

It is limited by program dependencies and runtime (memory contention, overheads,
synchronization)

Types of Parallelism

 Data parallelism: same ops on different elements of the data
all data needs to be available at the start of the processing.
e.g. independent loop executions
common model: Single Program Multiple Data

 Task parallelism: independent program parts tasks / functions distributed among the PU
Task Dependence Graph : a DAG where edges represent control dependency between
tasks.
Critical Path Length: slowest completion time
Degree of concurrency = total work / critical path length.

Representation of Parallelism

OpenMP� Explicit parallelism, implicit scheduling
MPI� Explicit parallelism, explicit scheduling, explicit mapping

scheduling → assign tasks to processes/threads
mapping → map process/threads to physical cores

Models of Coordination

 Shared Address Space: very little structure
All threads can read / write from / to all shared variables
Use locks for mutual exclusion
Drawbacks: requires hardware support (e.g. system-wide load and store), costly to
scale, memory contention
Examples: shared memory systems � UMA / NUMA

 Data Parallel: very rigid computation structure
Basic structure: map a (side-effect free) function onto a large collection of data, no
communication between distinct function invocations
Examples: CUDA, OpenCL

 Message Passing: highly structured communication
Tasks operate within their own private address spaces
Tasks communicate by explicitly sending/receiving messages
Examples: MPI, distributed memory systems

Note:

It is possible to implement shared address space abstraction on distributed memory
machines, and to implement message passing on a shared memory machines.

Parallel Programming Patterns

Shared Memory:

 Fork-Join. data / task parallelism.
 Parbegin-Parend : similar to fork-join, more equal-sized task. typically used for data

parallelism �OpenMP�.
 Pipelining: good for high number of even, repeated operations. Each task (stage) has

about the same computation time.
 SIMD � single instruction executed synchronously (lock-step execution). Used for data

parallelism.
 SPMD� same program executed on different processors and operating on different data.

no implicit synchronization and threads work asynchronously
different threads may execute different parts of the parallel program (non lock-step
execution). Generally used for data parallelism.

Shared / Distributed Memory

 Master-Slave: similar to parbegin-parend but suitable for distributed memory. Used
where some form of centralized coordination is needed. Both data parallelism and task
parallelism.

 Client-Server: MPMD model. Used in cases where there are multiple incoming requests
to process. Typically used for task parallelism.

 Task Pool: good when tasks vary in execution time / arrival time and doesn't require
centralized coordination.

number of threads is fixed.
each thread can create / process tasks. task parallelism
not very good for fine-grained tasks.

 Producer-Consumer: similar to task pool but used in cases where the problem can be
divided into source and sink. producer create tasks, consumer process tasks. number of
producer and consumer might be different

Data Distribution

a.k.a. Partitioning: useful for problems exhibiting data parallelism

1�Dimension distribution:

Blockwise: Form blocks of size and assign each block to a different core.
Cyclic: Perform round robin allocation
Block-cyclic: Form blocks of size and then perform cyclic allocation

We could also split across 2 (or more) dimensions. This is called checkerboard distribution.
The types are similar to 1�Dimension distribution but the blocks are now of size .

Factors to think:

 Work granularity + locality
 Communication overhead: how many neighbors to communicate with?

Information Exchange

Shared Variables (for Shared Address Space)

Need synchronization ops (e.g. mutex) to avoid data race.
Example: OpenMP �omp_set_lock, omp_unset_lock)

Dedicated Communication Ops (for Distributed Address Space)

Explicit send and receive in message passing model
Loosely synchronous: interactions might need synchronization, but between these
interactions, tasks execute completely independent.

Communication Protocols

Local view (only the sender / receiver)

Blocking� Send operations blocks until it is safe to reuse the input buffer.
for buffered: until data is copied to communication buffer. Need to deal with buffer
capacity management.
for non-buffered: until matching receive has been performed by receiver. Need to
deal with idling.

Non-blocking:
needs to poll to ensure completion of the operation, e.g. check-status
needs to make sure that the input is not modified before the operation completes.

Global View (both sender and receiver)

Synchronous� Communication operation doesn't complete before both processes
started their communication operation
Asynchronous� Sender can execute its communication operation without any
coordination with the receiver

GPGPU
Architecture

B

B

B1 × B2

Multiple Streaming Multiprocessors (SMs) with memory, cache and connecting interface
(usually PCI Express)
SM consists of multiple SPs, each containing memories (registers, L1 cache, texture
memory, shared memory) and logic for thread and instruction management.

CUDA

Definitions: Device � GPU, Host � CPU, Kernel = function that runs on device

Parallel portions execute on device as kernels, multiple kernels can execute in parallel in
newer CUDA hardware.

A kernel → executed by an array of parallel �CUDA� threads in SPMD fashion.

Although the most efficient execution happens in SIMD fashion, but threads can have
different execution flows (e.g. in branching)

Thread Blocks �TB�� The monolithic thread array are partitioned into blocks of CUDA
threads.

In each block, threads can cooperate by sharing computation results, sharing memory
accesses, atomic operations and synchronize execution
However, threads in different blocks cannot cooperate.
TB executes on one SM until it completes (no migration)
Multiple TB can reside concurrently on one SM

this number is limited by SM resources (i.e. register file, shared memory) as these
resources are partitioned among all SM residents
enables other TB to execute when the currently executing TB stalls

This enables programs to transparently scale (i.e. hardware is free to schedule TB to any
SM� to any number of processors (limited sync overheads)

Kernel is executed by a grid of TB.

Block IDs and Thread IDs

Blocks in a grid can be laid out in 1/2/3 dimensions. Each block has a blockID
Threads in a block can be laid out in 1/2/3 dimensions. Each thread has a threadID.
IDs are simply virtual arrangement to simplify memory addressing by the programmer
It is used to compute memory address and make control decisions

Thread Execution

SM will break down TB into groups of 32 threads (the division is consistent across runs,
based on threadIDs), called warps.
Warps execute in a SIMT (single instruction, multiple thread) model, similar to the SIMD,
i.e. lock-step execution.

CUDA Memory Model

Type Scope Access Type Speed Explicit sync Declaration

Type Scope Access Type Speed Explicit sync Declaration

Register thread RW fastest no -

Local thread RW depends* no -

Shared block RW fastest yes __shared__

Global program RW slow yes __device__

Constant program R (cached) slow yes __constant__

Texture program R (cached) slow yes __texture__

Note:

Local memory is actually an abstraction of global memory that is private to the thread,
that's why access speed is slower than a shared memory.

Description:

Local Memory: useful for automatic array variables ��4 elements) allocated by compiler
Constant Memory: useful for uniformly-accessed data
Texture Memory: useful for spatially coherent random access data
Shared Memory

Divided into equally sized memory modules called banks.
Memory accesses to the same bank (bank conflict) needs to be serialized.

Global Memory:
Simultaneous access to global memory by threads in a half-warp can be coalesced into
memory transactions of 32, 64 or 128 bytes.

Cache Coherence and Memory Consistency
System Model: Shared Address Space Model (shared variables, locks, any processor can
load and store from any address)

Note: Shared Address Space Model can also be implemented on distributed memory
systems.

Cache

Cache Properties

Cache size: larger cache, larger access time, smaller cache misses
Block size: larger blocks (tradeoff between spatial locality vs number of blocks stored in
cache)

Write Policy

 Write-through: write access is immediately transferred to main memory
 Write-back: write op only performed in cache (uses dirty bit)

Cache Coherence

Problem: multiple copies of the same data exists in multiple cache. We want each processor
to have a consistent view of memory through its local cache.

Property

 Program Order: reads its own write.
 Write Propagation� Writes become visible to other processors.
 Write Serialization� All writes to a location (by same or different processors) are seen in

the same order by all processors.

How to maintain coherence?

Software based solution: OS � compiler + hardware-aided (e.g. page fault to propagate
writes)
Hardware based solution: cache coherence protocols

Major tasks

 Track the sharing status of a cache line
 Handle updates to a shared cache line

Based on how cache coherence protocols track sharing status:

Snooping Based
No centralized directory
Each cache monitors / snoops on the bus and takes action for relevant bus transaction
�See bus-based cache coherence protocol)

Directory Based:
store sharing status in a centralized location.
Commonly used in NUMA

Bus-based cache coherence

 All processors can observe every transactions on the bus → satisfy Write Propagation
 Bus transactions are visible to the processors in the same order → satisfy Write

Serialization

Implication
Overhead in shared address space:

 Increased memory latency: CC needs some time to run
 Lower cache hit rate: cache line might be invalidated due to a write by another processor

to the same address or to a different address sharing a cache line (a.k.a. false sharing).

Memory Consistency

Concerns with the order in which memory operations (to different data) appear to execute to
other processors.

Consistency Models

P

Consistency models is used to decide the possible reordering by hardware and compiler.
Reordering independent memory access is often done to hide write latencies.

We can try to relax the ordering (of the results being seen) of memory ops if data
dependencies allow, i.e. no RAW, WAW, WAR dependencies on the same memory location.

Define:

 Write Propagation: If 1 processor sees a mem op's results, all processors see it.
 Write Serialization: All processors see the same order of mem ops.

Model Relaxation Effect seen

Sequential Consistency - Propagation, Serialization

Total Store Order W�R Propagation

Processor Consistency W�R -

Partial Store Order W�R � W�W Propagation

Interconnection Networks
Big Questions:

 Topology: What is the geometrical shape of the connection?
 Routing: What is the path for a message to follow?
 Switching: How to transfer a message along a path?
 Flow Control: How to handle concurrent messaging?

Topology

What is the geometrical shape of the connection?

Direct Interconnection

(a.k.a. Static / Point to Point): endpoints of same type

Metrics

Diameter: small diameter = small distance between any pair of nodes
Degree: small degree = reduce hardware overhead
Bisection width: measure capacity of a network when transmitting msg simultaneously
Node �Edge) Connectivity: number of nodes (edges) that must fail to disconnect the
network (robustness, edge measure number of independent paths between any pair)

Indirect Interconnection

switches provide indirect connection between nodes
switches can be configured dynamically.
sharing switches and links → reduce hardware costs

Metrics

Cost: number of switches / links
Concurrent connections

Examples

 Bus Network: only 1 concurrent connections. Good for small number of processors
 Crossbar Network:

 inputs and outputs
each switch can have two states: straight / direction.
Good for small number of processors as hardware is costly

 Multistage switching network: obtain small distance between arbitrary pairs of input and
output devices.

 Omega Network:
 stages @ switches

A switch will connect to and
 Butterfly network
 Baseline network

Routing

What is the path for a message to follow?

path length: shortest path
adaptivity

deterministic:
XY-routing for 2D mesh: move in X dir before Y dir
E-cube routing for Hypercube: start from MSB to LSB (or vice versa), find first
different bit and go to the neighboring node with bit corrected. at most hops
XOR-tag routing for Omega Network: Let be the XOR of source id and dest id.
Repeat times: cyclic left shift + flip last bit -th bit of is 1.

adaptive: take into account network status

Performance
Performance metrics: response time vs throughput
Performance depends on the programming, computational and architectural model

Possible Bottlenecks

 Instruction-rate limited
 Memory bottleneck
 Locality of data access
 Synchronization overhead

n × m

n m

n × n

log n n/2

(α, i) (α ≪ 1, i + 1) (α ≪ 1 + 1, i + 1)

n

T

lg n k T

Execution Time

We focus on user CPU time =

Note: memory hits (cache-access) has been included in the calculation of

CPI depends on the internal organization of the CPU, memory system and compiler
N_Instr depends on the computer architecture and the compiler.

Reads → read hit/miss → load into cache → deliver data
Writes → write hit/miss � Write Miss Policy �Write Allocate or Write Around) � Write Policy
�Write Back or Write Through)

Average Memory Access Time . Note that here refers
to cache access regardless of a hit / miss.

MIPS �Million Instruction / Second) and MFlOPS

Note: Higher MIPS doesn't necessarily correspond to faster execution time

Speedup and Efficiency

Cost where is the number of processor. A parallel program is cost-
optimal if it executes the same total number of ops as the fastest sequential program.
Speedup . Theoretically , but in reality the alternative
(superlinear speedup) can occur due to higher cache hits.
Efficiency where the theoretical maximum is 1.

Scalability

Amdahl's Law → fixed workload, how fast can we go?

where is the sequential fraction. This law is applicable at all levels of parallelism.

Gustafson's Law → fixed time, how big of a problem can we solve?

In many computing problems, the sequential fraction decreases with increasing problem
size .

where () is the constant execution time for sequential (parallel) part and is the
execution time for the best sequential algorithm.

Hence , i.e. the speedup increases as increases.

Instrumentation

(Ninstr(A) × CPI(A) + Nrw_op(A) × Rmiss(A) × Nmiss_cycles) × Tcycle

CPI(A)

Taccess(A) = Thit + Rmiss(A) × Tmiss Thit

Cp(n) = p × Tp(n) p

Sp(n) = Tbest_seq(n)/Tp(n) Sp(n) ≤ p

Ep(n) = Sp(n)/p

Sp(n) =
1

f + 1−f
p

≤
1

f

f

f

n

Sp(n) =
τf + τv(n, 1)

τf + τv(n, p)
=

τf + T ∗(n) − τf

τf + (T ∗(n) − τf)/p

τf τv T ∗(n)

lim
n→∞

Sp(n) = p n

How-to look inside processing tasks and analyze their timing and energy usage.

Approach: Analyze performance bottlenecks and fix.
Based on timeline: testing before release / incident performance response

Methodologies

Performance analysis: uptime, dmesg, vmstat 1, mpstat -P ALL 1, pidstat 1, iostat
-xz 1, free -m, sar -n DEV 1, sar -n TCP, ETCP 1, top

USE �Utilization: busy time, Saturation: queue length / queued time, Errors) method
Instrumentation tools: modify the source code, executable / runtime env to understand
performance

Types: manual, automatic source level, intermediate lang/compiler assisted (add code
to assembly / decompiled bytecode), binary translation (add code to executable),
runtime instrumentation (run in fully supervised env), runtime injection (code modified
at runtime)

Types of tools: observability, benchmarking, tuning, static

Observability

Watch activity, e.g. insert timing statements, check perf counters

Profiling

Profile CPU usage by stack sampling / Generate CPU flame graphs
Use perf / perf_counters
Understand CPU consumers, initialization of I/O, locks, etc.

Debugging

Valgrind: Dynamic Binary Instrumentation
Memcheck, a memory checker tool: use shadow memory, tools that shadow every
byte of memory used by a program with another value in software

A �"Addresability") bits: 1 indicates if an addressable memory byte. detect heap
buffer overflows, wild reads and writes.
V �"Validity") bits: 0 indicates a defined bit. detect dangerous use of undefined
values
Heap blocks: records the location of every live heap block. detect repeated frees,
memory leaks

Helgrind detects
misuses of POSIX pthreads API� intercepts calls to functions and instruments them.
Potential deadlocks arising from lock ordering problems: build a directed graph
indicating order in which locks have been acquired.
Data races: Build a DAG representing the collective happens-before dependencies,
and monitors all memory accesses for illegal order using a set of rules.

Sanitizer: compilation-based approach
e.g. -fsanitize=address, ThreadSanitizer (e.g. data races), MemorySanitizer (e.g.
uninitialized reads), UndefinedBehaviorSanitizer (e.g. Integer Overflow, Null Pointer),
Leak Sanitizer (e.g. memory leaks)

https://youtu.be/V2_80g0eOMc

Address Sanitizer: make use of shadow byte. Each aligned 8 bytes can have exactly 9
states → state stored in shadow byte.
Thread Sanitizer: runtime library

malloc replacement, intercepts all synchronization, reads, writes
Shadow cell: an 8-byte to represent 1 memory access �16bits: threadId, 42bits:
epoch, 5 bits: position/size in 8-byte word, 1 bit: isWrite)
Store stack trace for previous access:

each thread has a cyclic buffer containing 64-bit (type � PC� events (memory
access, function entry/exit)
Events can be replayed ot be shown on report

Detects normal data races; use-after-free; races on mutexes, file descriptors,
barrier; leaked threads; destruction of locked mutex; potential deadlocks, etc.

perf c2c: debug false sharing

Benchmarking

Load test. Results are usually misleading, since target might be wrong (e.g. FS cache instead
of disk)

Active benchmarking method (synthetic performance testing)

 Run the benchmark for hours
 While running, analyze and confirm the performance limiter using observability tools

Energy-Efficient Computing

Mobile Computing

Trends

Decrease power consumption in the hardware components
Increase performance (closing in with x64 systems)
e.g. ARM Cortex-A53 or ARM Cortex-A series

ARM Cortex-A family

Similarities to general purpose Intel/AMD servers:

 Processors cores � RAM � I/O interfaces + peripherals
 Cores use similar execution model (pipelines)
 Memory hierarchy � L1 � L2 � RAM
 Uses VM, commodity Linux, hardware virtualization + hardware-lvl security

Differences:

 Cores: RISC ISA � heterogeneous cores (a.k.a. big.LITTLE�
 Lower instruction level parallelism exploitation, smaller caches, less RAM (typically non-

upgradable), lower main-memory bandwidth, simpler I/O interfaces

ARM big.LITTLE�

big CPU � high performance for compute intensive applications
little CPU� low power execution for majority workloads, switch to big CPU after a certain
limit

How to reduce energy consumption:

Move less data: reduce data transfers to/from memory, exploit locality, use compression
Use specialized processing: avoid parallelization if unnecessary, combine cpu-like + gpu-
like (throughput optimized) cores, programmable hardware �FPGA�

Challenges:

how to reduce power consumption while maintaining good performance
usage of low-power (energy efficient) nodes: scheduling problem, energy-efficient
configuration for parallel application
effective usage of resources is left to the programmer: write efficient, portable code for
heterogeneous architectures.

Enterprise Computing

Data Centers

Problem: more power → more heat → needs cooling → more heat (for cooling)

Efforts: use renewable energy, measure Power Use Effectiveness �PUE�� total amount of
energy used / amount needed to run only the processors.

Case study: Energy Efficiency at Google

 Continuously measure efficiency
 Build custom highly-efficient servers

 minimize power loss in AC/DC conversions
 remove unnecessary parts, e.g. peripheral connectors and video cards
 decrease fan speed to optimize cooling
 strategic positioning on racks
 keep high performance computers always on

 Extend equipment lifecycle: reuse/resell components
 Control equipment temperature �26 C� � use thermal modeling, manage airflow
 Cooling with water instead of chillers.

Cloud Computing

Cloud computing: abstraction of underlying applications so that resources can be provided
and consumed in a more elastic manner and on demand.

Virtualization� Create a virtual version of something, e.g. OS, server, storage device,
network device, that can be accessed without being concerned where or how the resource
is physically located / managed.

Cloud Services Models

SaaS� Provider's application on Provider's servers
PaaS� Customer's application on Provider's OS and servers
IaaS� Customer-managed application � OS on Provider's servers

Challenges:

Technical: tricky programming, evolving tools, moving large data is costly, security, Quality
of Service, green computing, internet dependence
Non-Technical: Vendor lock-in, non-standardized, Privacy, Legal, SLA

Appendix
Odd-Even Sort (on linear array): for
Shear Sort �Row (alternate order) � Column phases on 2D mesh): for
Bitonic (up-down or down-up order) Sort:

OpenMP

loops: #pragma omp parallel for [shared(vars), private(vars),
reduction(op:vars), if(expr)], #pragma omp ordered (ordered execution between loop
iterations)
sections: #pragma omp sections [shared(vars), private(vars), reduction(op:vars),
if(expr)] and #pragma omp section
sync constructs: #pragma omp barrier (sync all threads), #pragma omp master (only
master), #pragma omp single (single thread), #pragma omp critical, #pragma omp atomic
(mini-critical section)
lock: omp_init_lock(omp_lock_t*), omp_set_lock, omp_unset_lock, omp_destroy_lock,
omp_test_lock

CUDA

function specifiers: __device__, __global__, __host__ (same as no specifier)
thread/block organization: dim3 myVar(4,4,4), gridDim, blockIdx.{x,y,z} (within the
grid), blockDim, threadIdx.{x,y,z} (within its block)
CUDA kernel function invocation: kernel_name<<<gridDim, blockDim>>>(args). args are
� 4KiB and passed using constant memory.
Memory type: no specifier (local memory), __shared__, __device__ (global memory,
compile-time known size), __constant__, __texture__
cudaError_t cudaMalloc(void** devPtr, size_t size). size in bytes
cudaFree(void** devPtr)

__managed__, cudaMallocManaged
cudaGetLastError(), cudaDeviceSynchronize()
atomicAdd (and, xor, or, min, max, sub). default to device-wide atomics. Other variants of
atomics scope: use _block or _system suffix.
__syncthreads: sync threads in a block.

MPI

Note: bufcnttype = void *buf, int count, MPI_Datatype datatype

O(n) P = n

O(√n lg n) P = √n

O(lg2 n)

MPI_Init(&argc, &argv),, MPI_Finalize()
MPI_Send, MPI_Recv (bufcnttype, desttag, Comm + Status* for MPI_Recv + Request* for
non-blocking)
int MPI_Sendrecv(send-bufcnttype, desttag, recv-bufcnttype, srctag,

Comm,Status*)

MPI_Wait(Request*, Status*), MPI_Waitall, MPI_Testall

Process groups: MPI_Comm_group(MPI_Comm, MPI_Group*), MPI_Group_incl(old_group,
count, ranks, MPI_Group* new_group), MPI_Group_rank, MPI_Group_size
Communicators: MPI_Comm_size(MPI_COMM_WORLD, &size),
MPI_Comm_rank(MPI_COMM_WORLD, &rank), MPI_Comm_create(MPI_Comm, new_group,
MPI_Comm* new_comm)

Cartesian topology: MPI_Cart_create(Comm_old, ndims, dims[], periods[],
reorder_rank?, cart_comm), MPI_Cart_coords(comm, rank, maxdims, coords[]),

MPI_Cart_shift(Comm, direction: 0 is y, 1 is x, displacements, rank_src*,

rank_dest*)

Communication: MPI_Bcast(bufcnttype, root, Comm), MPI_Scatter/Gather(send-
bufcnttype, recv-bufcnttype, root, Comm), MPI_Alltoall(send-bufcnttype, recv-
bufcnttype, Comm), MPI_[All]Reduce(send-bufcnttype, recvbuf, op, root, Comm),
MPI_Accumulate, MPI_Reduce_scatter

