
Disks, Files, Buffers
Disks

Disk Anatomy

Disk is composed of stacked platters spinned by a central spindle.
Arm assembly is moved in or out to position a head on a desired track

Tracks under heads make a "cylinder"
Block / page size is a multiple of (fixed) sector size.

Disk Access

 Seek time (moving arms to position disk head on track): ~23 ms
 Rotational delay (waiting for block to rotate under head) : ~04 ms
 Transfer time (moving data to/from disk surface) : ~0.25 ms / 64KB page

SSD / Flash memory

Issues in current generation (NAND
Fine grain reads (48K reads), coarse-grain writes (12MB writes)
Only 2k-3k erasures before failure, so we need to keep moving hot write
units around to spread storage wear level.
Write amplification: big units, need to reorg for wear & garbage collection

Performance:
Read is fast and predictable. Not much difference between random and
seq. reads.
Write is slower for random writes (about 4x slower compared to seq
writes)

Expect 10100x bandwidth for non-sequential read compared to magnetic disk.

Blocks / Pages

Block Level Storage: Interface for read and write large chunks of sequential bytes

Block / Page: Unit of transfer for disk read / write , usually 64128KB these days

Several techniques to maximize usage of data per R/W

 Cache popular blocks
 Pre-fetch several blocks at a time / large consecutive blocks.
 Buffer writes to sequential blocks. Arrange file pages by 'next' on disk to

minimize seek and rotational delay.

'Next' block concept on a disk:



sequential blocks on same track, followed by
blocks on same cylinder, followed by
blocks on adjacent cylinder

Disk Space Management (lowest layer)

Purpose: Map pages → locations on disk, load pages from disk → memory, save
pages back to disk. Ensure that sequential read/write is fast.

Implementation

Common: Run over filesystem (FS

Allocate single large "contiguous" file on a nice empty disk, and assume
sequential/nearby byte access are faset
Most FS optimize disk layout for sequential access
Problem: DMBS "file" may span multiple FS files on multiple disks/machines. So,
Disk Space Management provides "file" abstraction over details of FS files and
devices.

Files as Pages of Records

Tables are stored in logical DB files: a collection of pages, each containing a
collection of records.

Pages are managed on disk by disk space manager, and in main memory by the buffer
manager. Each DB file could span multiple OS files and even machines.

API for higher layers of DBMS

Insert/delete/modify record
Fetch a particular record by record id: a pointer encoding pair of (pageID,
location on page)
Scan all records

Unordered Heap Files

How do we find a page that can fit a record efficiently? Use a page directory
structure.

The directory is a collection (say, linked list) of header pages. The head of the
page directory is stored in the database catalogue.
The directory entries include a pointer to the data page and the number of free
bytes on the referenced page.

Pages

Header may contain:



number of records
how much free space is on the page
pointer to next page
bitmaps / slot tables to find free space on the page

Pages with Fixed-Length Record

 Packed : (-) need to repack on deletion and update all record id pointers
 Unpacked: Use number of slots field + a bitmap to denote "slots" status (valid /

deleted records). Record id: <page id, slot number>. Insertion: Find first free
slot. Deletion: Toggle bitmap "slot" status.

Pages with Variable-Length Record

Changes from pages with fixed-length record

Metadata is put at the footer.
Introduce slot directory in footer

number of slots in slot directory (to keep track if we need to add more
slots)
pointer to start of free space
each entry stores length + pointer to beginning of record (arranged in
reverse order)

Implementation Details:

Record ID  location in slot table (from right)
Deletion: Set slot directory pointer to null
Insertion:

 Place record in free space on page
 Create pointer/length pair in next open slot in slot directory
 Update free space pointer.
 (lazily) reorganize data on page and update all slot directory pointers.

Record Formats

Assume the schema and field types is stored in System Catalog. The goal is to have
fast access to fields and compact records both in memory and in disk format.

Variable Length Fields

Idea: Move all variable length fields to end to enable fast access
Implementation: Introduce a record header with pointers to variable length fields.

Buffer Management (2nd from bottom)



Files and Index Management expects data to be in RAM.
Buffer Management is very, very similar to cache.

Buffer Manager manages a buffer pool, large range of RAM allocated for DBMS
on server boot time.
Buffer Pool is partitioned into page-sized partitions called frames.
Metadata: Table of <frameid, pageid, dirty?, pin count> pairs are maintained.
Pin count represent the number of queries that is using the page. 1 on every
request, and caller must immediately unpin page on query completion.

Page Replacement Policy

Least Recently Used (LRU, usually approximated by Clock policy.
Clock:

Clock hand points to next page being considered.
Additionally, the metadata table maintain reference bit information (which is
1 for recently referenced pages)
When a page is requested, set pin and set reference bit to 1
When figuring out which page to throw out, move the clock hand around. If
the page is pinned, skip. If the page has ref bit, clear ref bit. Otherwise, we
have found the page to kick.

Most Recently Used (MRU outperform LRU/Clock on sequential scans.

Additional Topics

 Improvements for sequential scan: Prefetch
Amortize random I/O overhead
Allow computation while I/O continues in the background

 Hybrid page replacement policy: LRU for random access, MRU for certain joins.
Two general approaches:

 Use DBMS information to hint to BufMgr:
For big queries: predict I/O patterns from query processing algos
For simple lookups: Use LRU.

 Fancier stochastic policies: 2Q, LRU2, ARC
 DBMS vs OS Buffer Cache

Issues:
 Portability: different FS, different behaviour
 OS limitations: DBMS requires ability to force pages to disk (required for

recovery)
 OS limitations: DBMS can predict its own page reference patterns, affects

both page replacement and prefetching.

Indexes



An index is data structure that enables fast lookup (equality, 1-d range, 2-d region
search) and modification of data entries (items stored in the index : pair of keys and
heap file pointers) by search key (any subset of cols in the relation). If search key is a
candidate key, the index is called unique:

Things to consider when choosing an index:

search performance
storage overhead
update performance

Tree Based Indexes

Based on sorting of search key.

ISAM Indexed Sequential Access Method)

Data entries in sorted (by index key) heap file
High fan-out static tree index → only leaf pages modified
Fast search + good locality (things that are sorted tgt are stored tgt)
Insert into overflow pages → linked list of pages (not good!, lots of insertion
degrades performance into linear search)

B Tree

B Tree Visualization (usfca.edu)

Similar to ISAM same interior node structure, same search routine.
Leaf nodes stored in sorted data entries.
Each data record has an entry in the leaf node (dense index)
Dynamic Tree Index : always balanced, support efficient insertion & deletion
(grows at root not leaves)
B tree differs from B-tree because it stores data entries in leaves only (and this
enables fast range search)

Property:

Height-balanced (search and update efficient)
Each interior node (except root) is at least partially full → (storage efficient)

d <= #records <= 2d
d: order of the tree (max fan-out = 2d + 1
Typical B tree have order 1600, with 67% fill rate. Height 2 can store 10GB
of data.

Data pages at bottom need not be sequential pages. Next leaf pointer to chain
up the leaf nodes (efficient range search)

Insert

https://www.cs.usfca.edu/~galles/visualization/BPlusTree.html


Algorithm:

 Find the correct leaf L
 Put data entry onto L

If L has enough space, done!
Else, must split L (into L and a new node L2

Redistribute entries evenly, copy up middle key
Insert index entry pointing to L2 into parent of L

 Step 2 can happen recursively (index node can be full)
To split index node, redistribute entries evenly, but push up middle key.

Deletion

In practice, occupancy invariant often not enforced
Just delete leaf entries and leave space for future inserts.
Space are reclaimed only when a page / node is completely empty.

Bulk Loading

Inserting one by one (esp if data is not sorted) causes poor cache efficiency as we
are modifying random pages.

Instead, we can:

 Sort the input records by key
 Fill leaf pages to some fill factor, while updating parent pages.
 If the parent page is full, we split the parent node into 2 nodes with d entries

each and moving up the middle element.

Characteristics of an index

Query support

Basic Selection → equality, range selection
B Trees support both equality & range
Linear hash indexes provide only equality

Exotic selection → 2-d box, 2-d circle, k-nearest-neighbor queries, regex match,
etc.

Search Key and Ordering

We can index on any ordered subset of columns, but the order determines the
queries supported!
Suppose a composite search key is defined on columns . A query is
compatible with the index only if the query is a conjunction AND of 
equality clauses on  and at most 1 additional range clause on .

(c1, c2, … cn)

m ≥ 0

(c1, c2, … cm) cm+1



Reason: The index is looked-up and scan in lexicographic order. First, find
start-of-range, then do a scan of contiguous data entries until the
condition fails.

Data entry storage

Basic alternatives for data entries in any index:

 by value
 by reference (< key, matching record id >)
 by list of references (< key, list of matching record ids >).

Note: By-reference indexing (alternative 2 or 3 is needed to support multiple index
per table.

Clustered index

Index in which heap file records are kept mostly ordered according to search keys in
index (order need not be perfect).

Pros Cons

Efficient for range searches
More expensive to maintain: need to periodically
update heap file order either on the fly or "lazy"
reorgs

Potential locality benefits:
sequential disk access,
prefetching, etc

Heap file usually only packed to 2/3 to
accomodate inserts

Support certain types of
compression

Variable-length key tricks

How do we handle variable length keys like strings?

Observation: Order (d) makes little sense with variable length entries

Different nodes can hold different number of entries
Index pages often hold many more entries than leaf pages

We use a physical criterion in practice : at-least half-full (in bytes)

How can we get more keys on a page?

 Prefix Key Compression
might result in a slightly different layout compared to if we copy the whole
key, but it's okay



 Suffix Key Compression : Move common prefix to header and leave only (prefix-
compressed) suffix next to the pointers.

This is especially useful in composite keys!

Hash-based Indexes

Key k, hash function h, h(k) returns the pageID that stores record with search key
k.
Best for equality selections, inefficient for range searches (depends on hash
function used).
Performance degenerate for skewed data distributions
Buckets consists of 1 primary data page, and 0 chain of overflow pages.
Each data entry may contain the records directly or pointers to data records.

Static Hashing

Data stored in M (a fixed number) buckets

Dynamic Hashing

Linear Hashing

0 1 ... next - 1 | next ... N_i - 1 | N_i ... N_i + next - 1  

uses h_(i + 1)       uses h_i             uses h_(i + 1) 

Hash file grows linearly (1 bucket at a time, i.e.  should be split before  if 
).
At the end of each splitting round, the size of hash file would have
doubled, and the hash function should be changed.
Instead of doubling the number of buckets at once, splitting only 1 bucket
at a time minimize the number of record redistributions that is needed, thus
the operation that triggers this splitting is minimally affected.

Use the last  bits of h(k) to split records between  and 
Maintain a "next" pointer to indicate which bucket to split next.
When to split a bucket? Split whenever some bucket overflows

This will increment the "next" pointer (or increment level and set "next" ←
0
It might be the case that the current bucket we split is not overflowing.

When to delete a bucket? Only when the last bucket is empty.
Decrement "next" (or decrement level and set "next" ← last bucket in prev
level)

On average for uniformly distributed data, 1.2 disk I/O is needed.

Extendible Hashing

Bi Bj

i < j

⌈log N(i)⌉ + 1 Bj BN(i)+j



Sorting and Hashing
Sorting is used in many places:

 DISTINCT , GROUPBY  (rendezvous match: similar things are grouped together),
ORDERBY

 First step in bulk-loading tree indexes

Problem: It is difficult to sort 100GB of data with 1GB of RAM
Solution: Out-of-core algorithm (out of RAM

 Single-pass streaming data thru RAM
 Divide (into RAM-sized chunks) and Conquer

Single-pass streaming data

INPUT --- Input Buffers --- f(x) --- Output Buffers --- OUTPUT 

 Read a chunk from INPUT to an Input Buffer
 Write f(x) for each item into an Output Buffer
 When input buffer is consumed, read another chunk
 When output buffer fills, write to Output

Double Buffering Optimization

Thread 1 runs f(x) on 1 pair of I/O bufs, while Thread 2 drains/fills unused I/O bufs in
parallel. When Thread 1 finish, swap the two buffers

Thread 1: INPUT --- Input_Buf_1              Output_Buf_1 --- OUTPUT 

Thread 2:           Input_Buf_2 --- f(x) --- Output_Buf_2 

This can "hide" the latency of I/O behind CPU work.

External Sort



Sort a file with  pages using  buffer pages.

 Pass 0 Internal) sort each page in RAM. Produce  sorted runs of  pages
each.

 Pass 1, ... : merge  runs at a time (one buffer is used as the output buffer)
using streaming

Number of passes: 
Cost:  number of passes. With big values of , this cost is easily linear time.

Memory requirement :  memory to sort  pages.

External Hashing

Sometimes, we don't require order, we just need to rendezvous matches (e.g.
removing duplicates, forming groups)

 Divide (Streaming partition)
Use a hash fn  to stream records to disk partitions. Use 1 input buffers,
and  output buffers.
All matches ended up in the same partition. Each partition contains a mix
of values.
We ended up with  hash partitions of size .
If a partition ended up having size , recursively "External Hash" that
partition using another hash fn  for the divide step.

 Conquer (Rehash)
Motivation: same values from different pages ended up in 1 partition after
partitioning, but not contiguous.
Read partitions into RAM hash table one at a time, using hash fn 
Then, read out the RAM hash table buckets and write to disk, ensuring that
duplicate values are contiguous.

Note: For very frequent / duplicate key (e.g. gender column) → we ended up with the
same thing even after a recursive partition. We need another way to recognise this

N B
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and just put it back into disk.

Cost:  number of passes. 4N I/O's (if we assume ).
Memory requirement:  memory to sort  pages assuming hash function
distributes records evenly.

Sorting & Hashing pros

Sorting and hashing duality:

Sorting: Conquer & Merge
Hashing: Divide & Conquer

Sorting pros:

 Great if we need output to be sorted
 Not sensitive to duplicates or "bad" hash functions

Hashing pros:

 Easy to shuffle equally in parallel case
 For duplicate elimination, hashing scales with number of distinct values (not

number of items when using sorting)

External Sorting Optimization Consideration

On internal sort algorithm

We can use replacement selection instead to further reduce the number of
passes (and generate longer runs than memory size)
In practice the run length of replacement selection is generally .

Replacement Selection

Read B blocks into memory. For each iteration, move the smallest record to
output buffer then read in a new record. If the new record < last record in output
buffer, freeze block. Keep looping until all blocks are freezed.

Is minimizing pass always optimal?

Not always. For example in the merge step, assuming we have  input buffer pages
and a run fits in a track, we have 2 alternatives.

 Merging  runs of  pages at once will incur a cost of a seek every time we
read a page from a run. Total number of seek: 

 We will need 2 steps. If in the first step, we were to merge  runs of  pages at
a time (  times), we can read  pages at once, thus for each run we only need 

 seeks. As we have  runs and we need to repeat this merging  times, we

2N× N < B
2

∼ √N N
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ended up with  seeks for the first step. In the second step, we merge  runs
of  pages, we can read  pages at once, thus for each run, we only ended
up with  seeks. We ended up with  seeks for the second step. In total this is
only  seeks, smaller than .

Using B+-tree for sorting

A clustered B+-tree index is good for sorting, while unclustered tree index in general
performs worse than external sort (on reasonably sized buffer page), it can be useful
in scenario where initial fast response is needed (e.g. to upstream operator).

Evaluating Operations
Notation:

 : the number of pages of relation R
 : tuples per page

Joins

Setting: equality join on 1 column.

Always try to make the outer loop smaller in size then the inner loop. D

Simple (Tuple-based) Nested Loop Join

for tuple r in R do 

    for tuple s in S do 

        if r.sid == s.sid then add <r,s> to result 

Cost: 

Block Nested Loop Join

for page P_R of R do 

    for page P_S of S do 

        for tuple r of P_R do 

            for tuple s of P_S do 

                if r.sid == s.sid then add <r,s> to result 

Cost: 
Memory: 3 pages.

We can improve on this if we have more than 3 pages.
Cost: 

Memory:  pages

BN
K K

BN
K

B
K

N KN
BN
K + KN BN

|R|

pR

|R| + (|R| × pR) × |S|

|R| + |R| × |S|

|R| + ⌈ |R|
B−2 ⌉ × |S|

B



Sort-Merge Join

 Sort R and S on the join column →  each
 Scan them to do a "merge" on join column and output result tuples. → 

Cost: Sort cost + Merge cost

Grace Hash Join

 Partition phase: number of partition passes .
 Partition relation R (on join attribute) using hash fn h. ← at most 

partition.
 Partition relation S using the same hash fn h
 R tuples in partition i will only match S tuples in partition i

 Join phase: 
 Read in a partition of R � partition should fit in  pages.
 Build a hash table for the partition using hash fn h2
 Scan matching partition of S, search for matches (using hash fn h2

Need to check whether . If not, apply the hash-join
partition step recursively.

Cost: partition cost + join cost.

Index Nested Loops Join

Precondition: There is an index on the join column of one relation (S � put it as the
inner relation to exploit the index.

for tuple r in R do 

    search index of S on sid using S_{search-key} = r.sid 

    for each matching key 

        retrieve s 

        add (r,s) to result 

2|R| × (1 + ⌈logB−1⌈|R|/B⌉⌉)

(|R| + |S|)

×2 × (|R| + |S|)

B − 1

|R| + |S|

≤ B − 2

min(|R|, |S|) ≤ (B − 1)(B − 2)



Cost: 

Tuple search cost:

 B+-tree:
Clustered index: tree height + 1 I/O (typical)
Unclustered: tree height + upto 1 I/O per matching S tuple

 Hash index: 1.2  cost of finding S tuples (1 I/O per matching tuple)

General Join

Multiple equality conditions

SMJ, HJ � sort / partition on combination of the join columns
Index NJ � use existing index on one of the columns, or build a new index on
both columns

Inequality conditions

SMJ, NJ � fine
HJ � not suitable

General Selections

Terminology

Selectivity = size of result / . Selectivity of access path: num of pages
accessed. Most selective → lowest selectivity
Access path: ways of accessing data records/entries

table scan
index-only scan
index-search → might be followed by data records lookup
index intersection → combine result of multiple index traversal

An index I is a covering index of a query Q if Q can be performed using index-
only scan on I, i.e. all attributes referenced in Q is in I.
Index I matches predicate p if p have equality conditions on a prefix of I (order
matters, no attribute skipped), and at most 1 range condition for a B+-tree index.

Strategy

 Find most selective access path, retrieve tuples using it, then apply remaining
conditions that don't match the index

 If we have more than 1 matching index. Get set of rids using both matching
index, intersect, retrieve records, then apply remaining conditions.

Projection (DISTINCT

|R| + (|R| × pR) × tuple search cost

(|R| × pR)



Sort-based approach

Optimized step:

 Create sorted runs with attribute L
 Merge sorted runs while removing duplicates

 x size of L / original size of tuple
Unoptimized cost:  + cost of sorting  pages + 
Optimized cost:  (first phase) +  (second
phase)

Hash-based approach

 Partitioning phase: Project out unwanted attribute: t → t', then apply hash
function similar to hash join

 Joining phase: Read in 1 partition. For each tuple t in partition, insert t into hash
table only if it doesn't exist yet. Write out tuples in hash table.

To avoid partition overflow, we need , where  is a fudge factor for the
hash table.

Cost:  (partitioning) +  (duplicate elimination phase)

Comment Both hash-based and sort-based has same cost if 

Using index

If the index covers the projection, we can replace table scan with index scan
If the index is ordered (e.g. B+-tree index), we can scan data entries, and remove
adjacent duplicates.

Set Operations

Intersection and Cross Product are special cases of join
Union (Distinct) and Difference are similar

Sort based approach similar to external sort.
Hash based approach similar to external hashing / hash join.

Aggregates

Without grouping

Generally involves table scan. If there is a covering index, we can replace with index-
only scan.

With Grouping

|π∗
L(R)| = |R|

|R| + |π∗
L(R)| |π∗

L(R)| |π∗
L(R)|

|R| + |π∗
L(R)| |π∗

L(R)| × ⌈logB−1⌈|π∗
L(R)|/B⌉⌉

|π∗
L(R)|×f

B−1 < B f

|R| + |π∗
L(R)| |π∗

L(R)|

B > √|π∗
L(R)| × f



Sort/Hash on groupby-attributes, then compute aggregates for each group
If there is a covering tree index, we can do an index-only scan.

If group-by attributes form prefix of index search key, we can retrieve data
entries/records in group-by order.

Parallel Query Execution
Metric: We want to keep the throughput by increasing hardware as we increase
our workload.
Parallel architectures: 1. Shared Memory, 2. Shared Disk, 3. Shared-Nothing

Kinds of parallelism

 Inter Query: Each query runs on one thread (no parallelism within query), require
parallel-aware concurrency control

 Intra Query: Within a query
 Inter Operator: pipeline parallelism, bushy tree parallelism (parallelize

execution of different branches of a tree)
 Intra Operator: partition parallelism

Partitioning (partition table across disks / machines)

 range partitions: good for equijoins, range queries, group by
 hash partitions: good for equijoins, group by
 round robin: good for spreading load → might need broadcast insert / lookup

Parallel sorting and Parallel Sort Merge Join:

 Shuffle data across machines as it is streaming out of the disk: split on range of
value (taking care to ensure the same number of pages for each machine)

 Do local sorting on each machine.

Parallel hashing and Parallel Grace Hash Join:

 Shuffle data across machines as it is streaming out of the disk: Use another hash
fn . This will make same values ended up in the same machine.

 As values stream in, each machine starts doing partitioning phase (phase 1 of
external hashing.

 Wait until all machines finish phase 1, then do rehashing / joining phase (phase 2
on each machine.

Comment: near-perfect speed-up, scale-up! Only waiting is for phase 1 to end.

Parallel Aggregation:

For each aggregate function, we need to compute the local aggregate, and then
combine these aggregates into a global aggregate.

hn



Parallel Groupby:

 Local aggregation: in hash table keyed by group key , keep local aggregates
for each key.

 Shuffle local aggregates to receiver nodes using a hash function 
 Compute global aggregates for each key .

Symmetric (Pipelined) Hash Join:

Problem: Grace Hash Join can't start probing until the hashtable is built

Solution:

 Each node allocates two hash tables, one for each side.
 Upon arrival of tuple of R insert tuple into R hashtable, and probe S hashtable

for any matches, and output any that are found.
 Upon arrival of tuple of S symmetric to R.

Why does it works? Each output tuple is generated exactly once, i.e. when the second
part arrives.

Comment:

This join is a single phase, streaming algorithm, and hence is very responsive.
We can easily extend this to its parallelized version
Out of core symmetric hash join: X-join.
Non-blocking SMJ Progressive Merge Join.

Other join patterns

So far we have discussed symmetric shuffle patterns. Others:

 Asymmetric (One-sided) shuffle: When one of the table has been partitioned, we
only need to shuffle the other table.

 Broadcast join: When one of the table is quite small, say a few hundred rows, we
can replicate (or broadcast) this table to every other machine containing the
bigger table and let them do joins locally.

Query Optimizer
Intro

When a query is passed in,

 Query Parser: checks correctness, authorization; generates a parse tree
 Query Rewriter: converts queries to canonical form, e.g. flatten views, subqueries

into fewer query blocks

ki

hp(ki)

ki



 "Cost-based" Query Optimizer: Optimizes 1 query block at a time, and uses
catalog stats to find least-"cost" plan per query block

 Passed the final query plan to the query executor.

Orthogonal concerns in query optimization:

 plan space: Based on relational equivalences and different implementation
choice

 cost estimation: based on cost formulas and size estimation (based on catalog
information and selectivity)

 search strategy: how do we "search" in the "plan space" to find the lowest cost
option

Realistic) Goal: find the plan with least estimated cost (and try to avoid really bad
actual plans)

Plan Space

Algebra (Logical) Equivalences

Physical Equivalences

What algorithms can we swap in

Base table access with single table selections and projections: heap scan, index
scan (if available on ref columns)
Equijoins: BLNJ, Indexed NLJ (often good if 1 is relatively small, and the other is
indexed properly), SMJ (good with small memory, equal-size tables), Grace Hash
Join (better than sort if 1 table is small).

Heuristics

 Selection cascade and pushdown: apply selections as soon as you have the
relevant columns

 Projection cascade and pushdown: keep only the columns you need to evaluate
downstream



 Avoid cartesian products (not always optimal, e.g. when you have 2 very small
tables)

Note Pushing a selection into the inner loop (right branch) of a nested loop doesn't
save IOs, because it still needs to scan the entire right table on every iteration. That's
where materialization might come in handy.

Summary

For a SQL query, full plan space include all equivalent relational algebra expressions
(join orders, operation orders), and all mixes of physical implementations of those
algebra expressions (join algs).

We might prune this space by:

 Applying heuristics (selection / projection pushdown, avoiding cartesian
products)

 Considering left-deep trees only (a System R heuristics)
 Taking into account about physical properties (how the data is grouped),

because downstream ops may depend on them, and enforcing them later might
be expensive. E.g. SMJ groups data based on the group key, BLNJ preserves
outer table ordering, hashing groups similar data together, etc.

Cost Estimation

For each plan considered, we must estimate total cost

estimate cost of each operation in plan tree, which depends on input
cardinalities
estimate size of result of each operation in tree

because it determines downstream input cardinalities
We use information about the input relations
Typical assumptions: uniform distribution of data, independence of
predicates, inclusion assumptions for equijoins.

Statistics and Catalogs

Statistics and Catalogs provide information on relations and indexes involved.

Typically it contains at least:

 NTuples or || R || Number of tuples in a table (cardinality)
 NPages or | R |  Number of disk pages in a table
 Low / High: Min / Max value in a column
 Nkeys: Number of distinct values in a column.
 IHeight: Height of an index
 INPages: Number of disk pages in an index.



Catalogs are updated periodically, and modern systems usually keep more detailed
statistical information on data values, e.g. histograms.

Size estimates

Result cardinality = Max number of tuples x product of all selectivity

Assumption 1 Uniformly distributed over all distinct values in a column.

 col = value → sel = 1 / NKeys(I
 col1  col2 (handy for joins too) → sel = 1 / Max(NKeys(I1, NKeys(I2
 col > value → sel = (High(I  value) / High(I  Low(I  1

Assumption 2 Independent Predicates

Selectivity of AND  product of selectivities of predicates
Selectivity of OR  sum of selectivities of predicates - product of selectivities of
predicates
Selectivity of NOT  1  selectivity of predicates

Assumption 3 Preservation of value sets

For joins , then

NKeys(U, A  min { NKeys(R1, A, NKeys(R2, A 
NKeys(U, B  min { || U || , NKeys(R1, B .

Histograms

Types:

Equidepth: each bucket has approximately same number of records
Equiwidth: each bucket has (almost) equal number of values (same range)

Assumption: Within each bucket, records are uniformly distributed across the range of
the bucket

Comment: In reality, most modern DB only maintains histogram for the top 10% of the
distinct values, and treat the other buckets as uniformly distributed.

Search Strategy

Exhaustive search

Calculate cost for every plan

Greedy Algorithms

Based on heuristic, e.g. smallest relation next, smallest result next

U = R1(A,B) ⋈ R2(A,C)



Randomized techniques

Randomly move to neighboring states until it reaches either a local minimum / global
minimum using local optimization.

Moves are usually swaps between two relation, or cycles of three relations.

Comparison between exhaustive, greedy, and randomized algorithms:

Search space: Exhaustive (largest, i.e. all), Randomized (has the potential to be
large if rules is reasonable), Greedy (smallest)
Plan Quality: Exhaustive (best), Randomized (probably second, because
searching a larger space)
Optimization overhead: Greedy (fastest), Randomized (allows end user to
determine how much optimization by controlling how much time the optimizer
get to run or controlling how many plans are compared before deciding that the
plan is a local minimum based on the number of joins in query, e.g. more joins,
more comparison)

Dynamic Programming (System R

The algorithm proceeds by considering increasingly larger subset of the set of all
relations.

Builds a plan bottom-up (beginning from 1 table, then to 2, and so on)
Plans for a set of cardinality  are constructed as extensions of the best plan for
a set of cardinality .

DP may maintain multiple plans per subset of relations to capture interesting orders
of physical data, e.g. using SMJ ensures that the data is has been sorted, NLJ
preserves orders, hashing groups data, etc.

Time complexity: For left deep trees →  entries, for bushy trees → .

Concurrency Control
Why?

Increase throughput by increasing processor/disk utilization, e.g. can use CPU
while another transaction is writing to disk.
Increase latency since multiple transactions can run at the same time, so one
transaction's latency need not be dependent on another unrelated transaction.

Anomalies

 Dirty read: (WR conflicts) T2 reads an object that has been modified by T1
(which might abort later)

i

i − 1

2k − 1 O(3k)



 Unrepeatable read: (RW conflicts) T2 updates an object that T1 has just read
while T1 is still in progress. T1 could get a different value if it reads the object
again.

 Lost update: (WW conflicts) T2 overwrites the value of an object that has been
modified by T1 while T1 is still in progress. As a result, T1's update is lost.

Transactions

Transaction is a sequence of multiple actions (reads and writes of database
objects) to be executed as an atomic unit (batch of work must commit or abort
altogether).
Transaction manager controls execution of transactions.

ACID Properties of transaction

 Atomicity: Either execute all its actions or none of them.
 Consistency: If the DB starts out consistent, it ends up consistent. Consistent =

follows declarative integrity constraints, e.g. in CREATE TABLE  statements.
 Isolation: Execution of each transaction is not affected by (isolated from) other

transactions
 Durability: The effects of a commited transaction must survive failures.

Concurrency control provides isolation property, e.g. via 2PL
Recovery provides atomicity and durability properties, e.g. via WAL

Schedules

A schedule is a sequence of actions on data from 1 or more transactions
A schedule is a serial schedule if each transaction runs from start to finish
without any intervening actions from other transactions
2 schedules are equivalent if

 involve the same transactions
 each individual transaction's actions are ordered the same
 both schedules leave the DB in the same final state.

Schedule S is serializable if S is equivalent to some serial schedule.

Conflict Serializable Schedules

Two operations conflict if they are by different transactions, acting on the same
object, and at least one of them is a write.
2 schedules are conflict equivalent iff:

 They involve the same actions of the same transactions
 Every pair of conflicting actions is ordered the same way.

Schedule S is conflict serializable if S is conflict equivalent to some serial
schedule.



Equivalently, a schedule S is conflict serializable if you are able to transform S
into a serial schedule by swapping consecutive non-conflicting operations of
different transactions.
To rigorously prove serializability, we can construct a dependency graph with 1
node per transaction, and an edge from Ti to Tj if an earlier operation Oi of Ti
conflicts with an operation Oj of Tj.

Theorem. Schedule is conflict serializable iff its dependency graph is acyclic.

Remark: conflict serializable schedules are a subset of all serializable schedules.

View Serializable Schedules

Schedules S1 and S2 are view equivalent if:
 Same initial reads: if Ti reads the initial value of A in S1, then Ti also reads

the initial value of A in S2.
 Same dependent reads: if Ti reads the value of A written by Tj in S1, then Ti

also reads the value of Tj in S2.
 Same winning writes: If Ti writes final value of A in S1, then Ti also writes

final value of A in S2.
Schedule S is view serializable if S is view equivalent to some serial schedule.
View serializable schedules are the set of all conflict serializable schedules,
which also allows "blind writes".

Remark:

conflict serializability is more commonly used because it can be enforced
efficiently.
serial  conflict serializable  view serializable  serializable schedules.

Recoverable Schedules

For correctness, if Ti has read from Tj, then Ti must abort if Tj aborts. This recursive
aborting phenomenon is known as cascading aborts

A schedule S is recoverable if for each transaction Ti in S, Ti commits after Tj if
Ti reads from Tj.
A schedule S is cascadeless if a transaction Ti only reads from a committed
transaction Tj.
A schedule S is strict if for every  in S, O is not read nor written by another
transaction until Ti either aborts or commits.

Remark:

Recoverable schedules prevent undoing committed transactions, but still suffer
from cascading aborts.

⊂ ⊂ ⊂

Wi(O)



Cascadeless schedules allow writing to an object previously written by another
uncommitted transaction.
serial  strict  cascadeless  recoverable schedules.

Pessimistic CC Locking-based Protocol

The most common scheme for enforcing conflict serializability is 2 phase locking.
However, it is a bit pessimistic compared to alternative schemes, e.g. Optimistic or
Timestamp-Ordered or Multiversion Concurrency Control.

2 Phase Locking (2PL

Rules

 Well formed: Transaction must obtain a S (shared) lock before reading and an X
(exclusive) lock before writing

 Legal: Scheduler respects the lock compatibility matrix
 Two-phase: Transaction cannot get new locks after releasing any lock.

Lock compatibility matrix

S X

S T -

X - -

2PL guarantees conflict serializability, but does not prevent cascading aborts.

Why 2PL guarantees conflict serializability?

When a commiting transaction has reached the end of its acquisition phase, call this
the "lock point". At this point, it has everything it needs locked and any conflicting
transactions either started release phase before this point, or are blocked waiting for
this transaction. Two conflicting transactions will see data in the order that their
locked points occur. So, the order of lock points gives us an equivalent serial
schedule.

Strict 2 PL

As noted previously, 2PL suffers from cascading aborts.

Strict 2PL is similar to 2PL, except all locks are released together when transaction
completes, i.e. either transaction has committed (all writes durable) OR aborted (all
writes have been undone). As a result, the transaction will be atomically visible in the
database, and there is no need for cascading aborts.

⊂ ⊂ ⊂



Theorem. Strict 2PL schedules are strict and conflict serializable, but might suffer
from deadlock.

Comment: Googling says, this is called rigorous 2PL. Strict 2PL only delays releasing
X locks.

Lock Management

Lock and unlock requests are handled by Lock Manager. LM maintains a hashtable,
keyed on names of objects currently being locked, where each entry contains

granted set: set of transactions currently granted access to the lock
lock mode: type of lock held
wait queue: queue of conflicting lock requests.

Lock Granularity

What are the objects that we lock?

We have a dilemma between locking large objects (e.g. relations) which require few
locks but result in low concurrency, and locking small objects (e.g. tuples, fields)
which require more locks but result in higher concurrency.

Multiple Locking Granularity

Allows us to not have to make same decision for all transactions, as we allow
data items to be of various sizes.
Define a hierarchy of data granularities, and view it as a tree (DB � tables →
pages → records)
When a transaction locks a node in the tree explicitly, it implicitly locks all the
node's descendants in the same mode.

Warning Protocol (Jim Gray)

Idea: We allow transactions to lock at any level, but it must have proper intent locks
on all its ancestors in the granularity hierarchy before getting S or X locks.

Intention lock modes:

 IS Intent to get S lock(s) at finer granularity
 IX Intent to get X lock(s) at finer granularity
 SIX Like S and IX at the same time. Useful for typical SQL update command, e.g.

UPDATE employees SET salary = 1000 WHERE name = 'Bob';

Intention locks allow a higher level node to be locked in S or X mode without having
to check all descendant nodes.

How it works:



Each transaction starts from the root of hierarchy
To get S or IS on a node, must hold IS or IX on parent node.
To get X or IX or SIX on a node, must hold IX or SIX on parent node.
Release locks in bottom-up order.
Enforce 2 phase and lock compatibility matrix rules.

Lock compatibility matrix

IS IX S SIX X

IS T T T T -

IX T T - - -

S T - T - -

SIX T - - - -

X - - - - -

Comment: Why IX and SIX is not compatible? If SIX is currently hold, every child node
implicitly holds S lock. If I allow IX, the future X request on a child node will be
granted as the S lock is only hold implicitly. However, S and X lock are incompatible,
so I should not allow IX lock.

Examples:

 T1 scans R and updates a few tuples: gets an SIX lock on R, and get X lock on
updated tuples

 T2 reads only part of R gets an IS lock on R, and repeatedly gets an S lock on
tuples of R

 T3 reads all of R gets an S lock on R OR proceed like T2 with lock escalation
when too many low level locks are acquired.

Deadlock

Deadlocks are cycle of transactions waiting for locks to be released by each other.

Lock upgrade requests should be prioritized to avoid deadlocks. Even then, multiple
lock upgrades would still end up in deadlocks.

Common techniques of deadlock prevention fails:

 using timeout: what if transactions holds locks for a long time because it is busy
doing some computation?

 resource ordering: we cannot impose an order on the tuples or pages in our files.

Deadlock Avoidance

Assign priorities to transactions, e.g. based on age: now - start_time.



Say A wants a lock that B holds. Two possible policies

 Wait-Die If A has higher priority, A waits; else A aborts
 Wound-Wait If A has higher priority, B aborts; else A waits

Details:

These schemes guarantee no deadlocks because there is no cycle of waiting.
To prevent starvation, if a transaction restarts, it should get its old timestamp.
We can use other priority schemes, such as measures of resource consumption
like number of locks acquired.

Deadlock Detection

 Create and maintain a "waits-for" graph
 Periodically check for cycles in a graph.
 Breaks the deadlock by aborting a transaction in cycle using some priority

scheme (random, most "connected", workload/time-based, etc.)

Phantom Reads

In the above discussion, we have mechanisms to prevent the dirty read, unrepeatable
read and lost update problems. However, it assumes that we are working with a static
database. When insert / delete actions are accounted, we might face the phantom
read anomaly.

Phantom Read occurs when a transaction re-executes a query returning a set of rows
that satisfy a search condition and finds that the set of rows satisfying the condition
has changed due to another recently committed transaction.

A simple solution would be to lock the logical range that satisfy the search condition.

In practice, we set locks in indexes cleverly, so called "next key locking".

Optimistic CC Validation-based Protocol

This protocol is optimistic and lock-free! � no deadlocks!

Each transaction have 3 phases:

 Read
Read all DB values that needs to be read / written into a temporary local
storage
Do all updates / writes on local storage
Maintains read-set (RS and write-set (WS

 Validate: Check if schedule so far is serializable by ensuring no conflict between
RS / WS of different transactions

 Write: If validate returns ok, write to DB the values of WS. If not, "roll-back".



Details:

We maintain the timestamps for
 start(T start of read phase of T
 validate(T start of validate phase of T � used as the timestamp of

transaction ts(T.
 finish(T end of write phase.

Transactions are serialized using ts(T
The resulting schedule are casecadeless.
Rolled-back transactions restart with a new timestamp.

Validation rules for transaction A

For each active transaction B such that ts(B  ts(A, we must have transaction A to
satisfy one of the following conditions:

 finish(B  start(A  nothing to check
 start(A  finish(B  validate(A  check RSA  WSB  .
 validate(A  finish(B  check (RSA  WSA  WSB  .

CC for indexes

We don't want to use 2PL on B tree pages because the concurrency would suffer
badly. Instead, we use in-memory short locks (latches) in a clever way.

Idea: Upper levels of B tree just need to direct traffic correctly.
Possible problems:

 Two transactions / threads modify the contents of the same node at the same
time

 One transaction / thread traverses the tree while another splits / merges the
node.

Solution Latch Coupling / "crabbing". We have R and W latch)

Suppose we have a latch on a node N, we get a latch on the appropriate child C of N
and release latch on N only when we are sure that the node is not going to be splitted
/ merged when updates happen.

An alternative latching scheme

Whenever we insert/delete, we apply a W latch on the root node at the beginning. One
possible solution to increase concurrency would be to acquire only R latch until leaf
level, and if the leaf is unsafe, then we restart and revert to the basic latch coupling
scheme.

Leaf Traversal

∩ ∅

∪ ∩ ∅



So far, we have discussed tree traversal (top → bottom). If the latch of some child
node is latched, the transaction will wait.

However, in some cases, we also need to do leaf traversal, e.g. range queries. Here,
waiting can create deadlocks, e.g. imagine when 2 transactions do leaf traversal in
opposite direction. Therefore, to avoid deadlocks, we adopt a "no-wait" scheme, i.e.
any transaction that finds the next leaf locked, should abort and restart.

Recovery
When do transactions abort?

User / application explicitly aborts
Failed consistency check, i.e. violation of integrity constraint
Deadlock
System failure prior to successful commit

Why do databases crash? Operator error, configuration error, software failure,
hardware failure

Buffer Management plays a key role in recovery.

 Can a dirty page updated by a transaction T be written to disk before T
commits?

Yes → STEAL policy. Need to remember the old value of flushed pages to
support UNDOing the write to those pages if transaction aborts or system
crashes before the transaction can finish.
NO � NO STEAL policy. Achieves atomicity without UNDO logging, but
can cause poor performance, since pinned pages limit buffer replacement.

 Must all dirty pages that are updated by transaction T be written to disk when T
commits?

Yes → FORCE policy. Provides durability without REDO logging, but can
cause poor performance due to lots of random I/O during commit.
No → NO FORCE policy. Flush as little as possible (only flush logs). Need
to remember the new value to allow REDOing modifications in case of
system crash before dirty page is flushed to DB disk.

Log-Based Recovery

Idea: For every update, record info to log to allow REDO/UNDO.

The Log

Log An ordered list of log records, with a write buffer ("tail") in RAM.
Log records: < transaction ID, pageID, offset, length, old data, new data >



Each log record has a Log Sequence Number (LSN, which is unique and
increasing
Track flushedLSN in RAM LSN of the last log that we flush to disk)
Each data page in the database contains a pageLSN, i.e. the LSN of the most
recent log record that updates that page
To implement Write Ahead Logging: before page X is flushed to DB, it must
satisfy pageLSN_X  flushedLSN.

UNDO logging - STEAL/FORCE

For every action, generate undo log record that contains the OLD value

Logging rules:

 If T modifies X, then <T, X, v> must be written to disk before the dirty page
contaning X.

 If T commits, then dirty pages must be written to disk before <COMMIT T.

Recovery rules:

Construct set S of incomplete transactions
Undo actions of transactions in S in backward order.

Remarks: dirty pages are written early, before commit

REDO logging - NO STEAL/NO FORCE

For every action generate redo log record that contains the NEW value

Logging rules:

 If T modifies X, then both <T, X, v> and COMMIT T must be written to disk
before the dirty page contaning X.

Recovery rules:

Construct set S of committed transactions
Redo actions of transactions in S in forward order.

Remarks: dirty pages are written late, after commit

UNDO/REDO logging - STEAL/NO FORCE

Logging rules:

 Log record flushed before corresponding updated page
 ALL log records (including commit log) flushed at commit

Recovery process:

≤



Backward pass
Construct set S of committed transactions
Undo actions of transactions not in S

Forward pass: Redo actions of transactions in S

Remarks: No restriction on when to write dirty pages.

Checkpointing

Problem: Recovery can be very, very SLOW because we need to read from the
beginning of the log.

Simple Solution: We periodically checkpoint

 Do not accept new transactions
 Wait until all (active) transactions to finish
 Flush all log records to disk (log)
 Flush all buffers to disk (DB
 Write "checkpoint end" record on disk (log)
 Resume transaction processing

Now, we don't need to examine log records before the most recent checkpoint.
However, the database freezes during checkpoint

Non-Quiescent Checkpointing

Undo Log

Record all active transactions S at <START CKPT
Wait until all transactions in S to finish. Undo Logging guarantees that all
updates made by transactions in S are reflected on disk (DB.

During recovery, we only need to UNDO all uncommitted (including aborted)
transactions after the most recent <START CKPT.

Redo Log

Write to disk all dirty pages updated by transactions that committed before
START CKPT.

During recovery, we only need to REDO all transactions that commit after the most
recent <START CKPT.

Undo/Redo Log

Flush all dirty buffer pages prior to <START CKPT.



During recovery, we only need to REDO all committed transactions and UNDO all
uncommitted (including aborted) transactions after the most recent <START CKPT.

Handling Media Failures

Make copies of data

Triple Modular Redundancy: keep 3 copies on separate disks, and vote for
consensus
DB Dump + log: If active database is lost, restore active database from backup
+ replay redo entries in log.


