
Information Retrieval
Some sources:

Stanford's NLP Book
Related course in ETH Zurich

Terms:

 Precision: percentage of relevant documents amongst all retrieved documents
 Recall: percentage of retrieved documents amongst all relevant documents

Lecture 1 N-grams)
Language model → Created based on a collection of text, and we assign a probability to a
sequence of words.

Ngram LM � remembers sequences of n tokens

Probability-based LM with smoothing (e.g. add 1 smoothing: add 1 count to all entries in the
LM, including those that are not seen). Smoothing is used to take into account to a probable
word that has not been seen yet, so that we reduce the number of 0 probability that we get.

Example:

Q paint my love

Unigram: P(paint) x P(my) x P(love)
Bigram: P(paint) x P(my | paint) x P(love | my).

Lecture 2 Boolean retrieval)
Assumption: We have a fixed set of documents and we want to find documents that is
relevant to a given task.

Boolean Retrieval

Document is the unit that we decide to build our model over
Corpus / Collection is the group of documents over which we perform retrieval
The Boolean retrieval model is a model for information retrieval in which we can pose
any query which is in the form of a Boolean expression of terms (AND OR NOT. It views
each document as a set of words.

Term-Document Incidence Matrix

Think adjacency matrix. Term on the rows, Document on the column. iff term exists
in document .

xi,j = 1 i

j

https://nlp.stanford.edu/IR-book
https://www.youtube.com/playlist?list=PLs5KPrcFtb0VRtDOVuAnrXcROyFROskqx

We can now take the rows as vectors (or its complement) of 0 and 1 � called incidence
vectors, and do a bitwise AND to get the result we wanted.

Might not be scalable on a huge corpus → resulting in a sparse index.

Inverted Index

Think adjacency list. Improves from the previous approach. Something like:
term (number of docs containing term) : docId1 -> docId2 ->docId3 -> ...

We keep a dictionary of these terms and for each term, a posting list: a list that records
which documents the term occurs in. Each item on the list is called a posting.

The dictionary is sorted alphabetically, and the posting list is sorted by document ID.

Lecture 3 Posting lists and Choosing Terms)

Posting lists enhancement

faster merges by using skip lists: improve AND queries, but are only available for original
posting list

Handling Phrase queries:

Some techniques:

 extended biwords (bucketing terms based on nouns and articles). E.g. "catcher in the rye"
→ "catcher rye".

However, this technique cannot verify whether the document contains the original
phrase for 3 or more words.
It also significantly expands the size of vocabulary

 Positional indexes: can handle explicit proximity search
 Hybrid: Augment positional indexes with biword indexes, e.g. store common queries /

common individual words but rare phrase queries as biwords index.

Positional Indices

We also store the position(s) in which the tokens appear

<term, number of docs containing term; < docId1 position1, position2, ... >; < docId2
position1, position2, ... >; etc. >
We can further compress this
index size depends on average document size, since we need an entry for each
occurrence (not just once per document)

Usually this index is ~2 4 times bigger compared to non-positional index.

Considerations

 Text extraction: different text format / language result in different encoding on the disk.
We should be able to extract the text from all these documents. Another problem that
might arise is a single document might contain multiple languages.

 Granularity of indexing: What should the unit document be? 1 file? 1 email? a group of
files? This is usually down to tradeoff between precision and recall. The problems with
large document units can be alleviated with (explicit / implicit) proximity search.

 Tokenization: What are the correct tokens to use? Hard to get it consistent, really...
English tokenization: How to handle apostrophe, hyphen, spaces?
Numbers, dates, other non-standard formats
Language issues: German noun compounds, French (L'ensemble), Chinese and
Japanese (no spaces between words), Japanese (multiple writing systems), Arabic or
Hebrew (inconsistent RTL or LTR

 Stop word removal?
Remove "the", "a", "and", "to", "be"
Trend is moving away from removing stop words, since we now have good
compression techniques and good query optmizations.

 Normalizing tokens to terms
Equivalence classing:

deleting periods, hyphens, accents, e.g. U.S.A � USA
case folding (reduce all letters to lower case)
synonyms, spelling variations, transliteration variations ...

Asymmetric expansion
search for different keywords e.g. different search for window vs windows vs
Windows

 Lemmatization: reduce inflectional/variant forms to base form.
e.g. am, are, is → be

 Stemming: reduce terms to their "roots" before indexing (usually by chopping off end of
word)

compressed, compression → compress

Lecture 4 Dictionaries and Tolerant Retrieval)

Search structure for dictionaries

 Hash table:
Fast lookup
However, there is no support for prefix search, no easy way to find minor variants.
We might need to use linear hashing or rehash everything as the vocab grows.

 BTree
Solves prefix problem, runs in O(log M
However, search trees required that the characters used have a prescribed ordering,
which might not exist in some language, e.g. Chinese and Japanese. Note: They now
have standard ordering for their character set.

Wildcard queries (*)

Prefix search is easy using B-tree. For postfix search, we can use a reversed B-tree.

Some solutions to handle general "X*Y" search:

 For single * Do prefix search, postfix search then intersect!
 Permuterm index
 2-step query processing with additional k-gram index

Permuterm Index

Idea: We add a special character ($) to the end of a term, then we index all possible rotation
of the modified term.

For any query,

 Rotate the query s.t. it become a prefix search
 Use the permuterm to lookup original vocabulary terms matching a wild card query.
 Lookup these matching terms in the original inverted index, to retrieve matching

documents.

For cases where there are more than 1 wildcards, e.g. "X*Y*Z", we can find all matching
terms for "X*Z" and then exhaustively enumerate each candidate to check whether it
matches the original query.

Problem: number of indexed terms grows proportional to the average word length.

Using k-gram indexes

Idea: We maintain a second inverted index mapping k-grams to dictionary terms

For any query,

 Find matching (dictionary) terms by issuing a Boolean Query on the second inverted
index.

 Surviving dictionary terms are then looked up in the term-document inverted index.
 Post-filter false positives

Advantage: Fast and space efficient compared to permuterm
Disadvantage: Query processing can be quite expensive

Spelling Correction

Two main flavors: isolated (check each word on its own for misspell), context-sensitive (look
at surrounding words)

There are 2 sides of spelling correction: query correction, and document correction (often in
this case, we don't change the document but we fix the query-document mapping)

Isolated word correction

We need a source for correct spellings, e.g. Merriam-Webster's English Dictionary.

"Closest" definition is a combination of:

 Weighted) edit distance:
weight can be assigned by considering the likelihood of a typo
Question: For which string should we compute the edit distance? Exhaustive search is
expensive...

 k-gram overlap with normalization: compare the number of n-gram overlap
By using k-gram index, we can limit the set of vocabulary term for which we compute
the edit distance
Use Jaccard coefficient: as the measure of overlap, where is the set of all k-
grams in query and is the set of k-grams in a matching vocabulary term.

Note: Although we can easily compute , it is not the case for . Luckily, what we
actually need is only , and which are all readily available.

Context-sensitive spelling correction

Possible approach:

 Retrieve possible "corrections" to each term in the query, and enumerate all possible
resulting phrase with one term "corrected" at a time

 Break phrase queries into a conjunction of biwords, look for biwords that only need one
term to be corrected, and enumerate phrases with common biwords

General issues

We have enumerate several ways to generate corrections, but how do we choose what to
present to users? Some heuristics:

 Hit-based spelling correction: based on the popularity of the correction
 Query log analysis: based on previous queries

Phonetic Correction (Soundex)

The main idea here is to generate, for each term, a “phonetic hash” so that similar-sounding
terms hash to the same value, e.g. Chebyshev and Tchebysheff

Overall scheme:

 Turn every term to be indexed into a 4-character reduced form. Build an inverted index
from these reduced forms to the original terms; call this the soundex index.

 Do the same with query terms.
 When the query calls for a soundex match, search this soundex index

How do we generate the reduced form? See wikipedia.

When might this algorithm not work? It rests on the following observations which might not
be true for non-European languages:

 Vowels are viewed as interchangeable, in transcribing names;
 Consonants with similar sounds (e.g., D and T are put in equivalence classes

Lecture 5 Index Construction)

|X∩Y |

|X∪Y |
X

q Y

X Y

|X| |Y | |X ∩ Y |

https://en.wikipedia.org/wiki/Soundex

BSBI Blocked Sort-Based Indexing):

Very similar to External Merge Sort.
Difference: Instead of indexing on term, we index on termID

 segments the collection into parts of equal size
 sorts the termID–docID pairs of each part in memory
 stores intermediate sorted results on disk
 merges all intermediate results into the final index

Constraint: Need data structure to map terms to termID which must fit in-memory.

SPIMI Single Pass In Memory Indexing):

Similar to BSBI with improvements:

 Instead of first collecting all termID–docID pairs and then sorting them (as we did in BSBI,
postings are directly added to the postings list. As we stream the document from smaller
ID to larger ID, the postings list itself is already sorted. However, we still need to sort the
terms before writing to disk to facilitate the final merge.

 There is no more term-termID mapping held in memory, because we directly store the
term in the inverted index.

Distributed Indexing

Pain points: web-scale indexing, fault-tolerance

An application of the MapReduce algorithm where

Map is the Parser, i.e. parsing documents → list of [termID, docID pairs
Reduce is the Inverter, i.e. transforming list of [termID, list(docID � list of [termID,
posting lists]

Dynamic indexing

So far, our assumption is that the document collecton is static. Re-indexing every time a new
document is added/removed is expensive (incur too much random disk seeks).

Instead, we maintain a (big) main index and a (smaller, in-memory) auxiliary index where new
docs are indexed. Over time, the auxiliary index is merged with the main index.

Advantages of this approach is to reduce the number of random disk seeks in the naive
approach.
To search, we query both the main index and the auxiliary index and merge the results.
We also maintain a invalidation vector bit for deleted docs and filter all results that comes
from deleted docs.

We can further extend the idea from using just 2 indexes to indexes of
size . This technique is called logarithmic merge

log2(T/n) I0, I1, …

20 × n, 21 × n, …

Sacrifices a bit of querying complexity (because we now needs to merge results
instead of 2 previously) for a much faster indexing complexity (from down to

)
Disadvantage: Harder to maintain collection-wide statistics

Other indexing problems

positional indexes : much larger
user access rights : whether a user has access to a certain doc

Lecture 6 Index Compression)
book chapter

Why compress?

 Less disk space
 Improved cache utilization → because more data can be fit into memory
 Faster disk-to-memory data transfer: read compressed data + decompressing is faster

than reading uncompressed data.

Case folding, stemming, stop word elimination, and vector space model are forms of lossy
compression.

Statistical Properties

Heap's Law

Heap's Law estimates the number of vocabulary terms () as a function of the collection
size: where is the number of tokens in the collection, and typical values for is

 and

Heaps’ law suggests that the dictionary size continues to increase with more documents in
the collection and therefore, the size of the dictionary is quite large for large collections.

Zipf's Law

The -th most frequent term has frequency proportional to that of the most frequent term

Dictionary Compression

Why?

Search begins with the dictionary, and hence we want to keep it in memory.
Main memory might be limited in phones / embedded hardware
We want it to be small enough so that search is fast.

The easiest way to store a dictionary is to use a fixed-width entry for terms

log2(T/n)

O(T 2/n)

O(T ⋅ log(T/n))

M

M = kT b T k, b

30 ≤ k ≤ 100 b ≈ 0.5

i 1
i

https://nlp.stanford.edu/IR-book/pdf/05comp.pdf

 Dictionary as a string: Store the terms in a string, and use term pointers (and the next
term pointers) to indicate the start (and end) of the term in the string.

e.g. automataautomateautomaticautomation
 Blocked storage: Group terms in the string into -sized blocks and keeping a term pointer

only for the first term of each block. Additionally, we add an extra byte before each term to
indicate the length of the corresponding term.

By increasing , (compressed) dictionary size decreases, but term lookup becomes
increasingly slow due to linear search.
e.g. 8automata8automate9automatic10automation

 Front coding: Leveraging the fact that consecutive entries in an alphabetically sorted list
share common prefixes.

e.g. 8automat∗a1⋄e2⋄ic3⋄ion

Other schemes: minimal perfect hashing (not suitable for dynamic environment)

In some cases, it might not be feasible to store the entire dictionary in main memory. If that's
the case, we can partition the dictionary onto pages stored on disk, and index the first term
of each page using a B-tree.

Postings file compression

Observation: Postings for frequent terms are close together.
Idea Instead of storing docID, we can store gaps between consecutive postings which takes
much less space than storing the docID.

To encode small numbers in less space than large numbers, we look at 2 methods of
compression: bytewise compression and bitwise compression.

Variable Byte(VB Encoding

The last 7 bits of a byte are “payload” and encode part of the gap. The first bit of the byte is a
continuation bit. It is set to 1 for the last byte of the encoded gap and to 0 otherwise.

To decode, we read a sequence of bytes with continuation bit 0 terminated by a byte with
continuation bit 1. We then extract and concatenate the 7-bit parts.

The idea of VB encoding can also be applied to larger or smaller units than bytes: 32-bit
words, 16-bit words, and 4-bit words or nibbles. In general, bytes offer a good compromise
between compression ratio and speed of decompression, and between time and space.

 encoding

 codes implement variable-length encoding by splitting the representation of a gap G into
the pair (length, offset).

Offset is G in binary, but with the leading 1 removed.
Length encodes the length of offset in unary-code (unary code of is a string of 1s
followed by a 0
e.g. the code of 13 is therefore 1110101, the concatenation of length 1110 and offset 101.

k

k

γ

γ

n n

γ

Define entropy of a discrete probability distribution as .
Note that we have . It can be shown that encoding is within a factor of 2 of
the optimal code for distributions with large entropy.

 encoding has several desirable properties:

 universality: The code is within a factor of optimal for an arbitrary distribution of the
collection frequencies

 prefix-free: There is a unique decoding of a sequence of codes
 parameter-free: It doesn't need to fit the parameters of a model to the distribution of gaps

in the index. This simplifies implementation of compression / decompression and
completely removes the possibility of the original parameters being no longer appropriate
in dynamic indexing situations.

 codes achieve great compression ratios, but they are expensive to decode because many
bit-level operations - shifts and masks - are necessary to decode a sequence of codes as
the boundaries between codes will usually be somewhere in the middle of a machine word.

 encoding

 encoding is relatively inefficient for large numbers. So, codes differ by encoding the first
part of the code (length) in code instead of unary code.

Lecture 7 Scoring, Weighting, VSM
book chapter

Problem with boolean retrieval: either too few or too many results are returned.
Solution: Instead of a set of documents satisfying a query, a ranked retrieval system returns
an ordering over the (top) documents in the collection with respect to a query. The query is
usually free text queries.

Weighting, Scoring

We would like to compute a score between a query term and a document . Several ways of
scoring:

 Term frequency(tf): score based on the number of occurrences of term in document
Observation: documents that mentions a query term more often is more relevant for
that particular query.
We might not want to use raw term frequency though, since a document with 10
occurrences of the term is not 10 times more relevant than that of 1 occurrence.
Instead, use a log-frequency weighting scheme such as for tf > 0 and
0 otherwise.

 Inverse document frequency (idf): where is the number of documents that
containt and is the collection size.

Observation: frequent terms are less informative than rare terms
We define idf this way instead of to dampen the effect of idf (using log) and to keep
the value non-negative because

H(P) P H(P) = −∑x∈X P(x) log2 P(x)

∑x∈X P(x) = 1 γ ≈

γ

P

γ

γ

γ

δ

γ δ

γ

t d

t d

wf t,d = 1 + log tf t,d

idf t = log N
df t

df t

t N

1
df t

df t ≤ N

https://nlp.stanford.edu/IR-book/pdf/06vect.pdf

idf weighting only affects ranking for queries with at least 2 terms.
Note: We use document frequency instead of collection frequency (total number of
occurrences of a term across the entire collection)

 tf-idf weighting: .
best known weighting scheme in IR
highest when occurs many times within a small number of documents
lower when the term occurs fewer times in a document, or occurs in many documents
(thus offering a less pronounced relevance signal)
lowest when the term occurs in virtually all documents, e.g. stop words

The simplest way to assign a score to a document for a particular query is

Storing tf-idf weight for each posting is not space-efficient (floating number storage).
Instead, we maintain an idf value for each dictionary term, and a tf value for each postings
entry.

Vector Space Model

This is paradigm for free text queries.

Documents as vectors

View document as a vector in a -dimension space where is the number of vocabulary
terms in the collection. The set of documents in a collection then may be viewed as a set of
vectors in a vector space, in which there is one axis for each term.

One can use any kind of weighting (some are described above) to determine the elements
of the vectors. These are very sparse vectors as most of the entries are 0.
VSM is a bag-of-words model. It doesn't retain the relative ordering information of terms.

Queries as vectors

Represent queries as vectors in the space, and rank documents according to their proximity
to the query in this space.

Formalizing proximity

We use the cosine similarity, i.e. , as the proximity metric between two vectors
and . For length-normalized vectors, the cosine similarity can be computed as the dot
product between the two vectors.

Variant tf-idf functions

wt,d = wf t,d × idf t

t

d q ∑t∈q tf.idf t,d

d |T | |T |

cos(v1, v2) v1

v2

SMART Notation denotes combination used with the notation

A very standard weighting is lnc.ltc

Why we don't normally use idf in the document vector?
If the index is dynamic, then we would need to update each document vector such that it
reflects the correct idf whenever a document is added/removed/updated, which is very
expensive.

Pivoted normalized document length

Previously, we normalized each document vector by the Euclidean length of the vector, but
that eliminated all information on the length of the original document. We do not account that
longer documents will have higher tf values (as it contains more terms), and contain more
distinct terms.

We can compensate for document length by using pivoted document length normalization.

ddd. qqq

Suppose we graph the probability of relevance as prescribed by the cosine normalization
(thin line) and the actual probability of relevance (thick line) as functions of document length.
Define pivot as the document length for which this two curve cross. We want to tweak the
normalization length s.t. the cosine probability relevance resembles more closely to the
actual relevance.

The simplest idea is to rotate the cosine relevance around the pivot, that is by changing the

normalization length from euclidean length to for some
normalization factor . In practice, this equation is well approximated by where

 is the number of unique terms in document .

Summary

Algorithm for vector space ranking

 Represent each document as a weighted tf-idf vector.
 Represent the query as a weighted tf-idf vector
 Compute the cosine similarity score for the query vector and each document vector
 Rank documents by score and return the top documents to the user.

Lecture 8 Complete Search System)

|V (d)|
−→

a|V (d)| + (1 − a)lp
−→

a aud + (1 − a)lp

ud d

K

Efficient Scoring

To improve scoring efficiency, we can let for

Big problem: calculating cosine similarities between the query and a large number of
documents is really expensive

Generic solution:

 Find a set of contenders s.t. . It doesn't necessarily contain the top-
scoring documents for the query, but is likely to contain many of them.

 Return the top-scoring documents in .

In the following, we discuss some heuristics to improve scoring speed, while tolerating a bit
of sloppiness

Index Elimination

 Only consider terms with high idf (above preset threshold)
similar in spirit to stop word removal

 Only consider documents that contain many (or all) of the query terms
can be accomplished during postings traversal
DANGER might end up with fewer than candidate documents

wt,q = 1 t ∈ q

A K < |A| ≪ N K

K A

K

Champion Lists

Also called fancy lists or top docs.

Idea: precompute for each term in the dictionary, the set of the documents with the
heighest weights for .

Note: For tf-idf weighting, this just means taking the documents with the highest tf values
for term .

At query time, only compute scores for docs that is part of some query term's champion list.
Then, pick the K top-scoring docs from amongst these.

Danger: As is set at the time of index construction, it may be less than (specified at
query time)

Static Quality Scoring and Ordering

Suppose we have a measure of authority for each document that is static, i.e. query-
independent. E.g. number of favorable reviews of a webpage, citations, views etc.

Idea We want our results to be both relevant and authoritative. So, we can use a function of
 and cosine scores (measure of relevance) to order our postings list instead of docID.

A simple function combining cosine relevance and authority is
.

Since is static, this is a common ordering for all postings.

Two applications:

 In time-bound applications, static quality ordering allows us to stop postings traversal
early, as top-scoring docs are likely to appear early in postings traversal.

 We can extend the idea of champion lists by picking docs with highest

Tiered Indexes

A common solution for having less than documents to accumulate score.

Idea: Break inverted index into tiers of decreasing importance. At query time, use only top
tier index. If it has less than docs, drop to lower tiers.

Impact Ordering

Key idea: Order the postings list based on a function that do not necessarily preserves
ordering across terms, also known as term-at-a-time scoring. The simplest would be:
decreasing order of for each term .

So far, we always have document-at-a-time scoring. Ordering our postings list by docID or
other common ordering such as static quality scores, allow us to support concurrent
traversal of all of the query terms' postings list, computing the score of each doc as we
encounter them.

t r

t

r

t

r K

g(d) d

g(d)

net-score(q, d) = g(d) + cos(q, d)

g(d)

r f(g(d), tf-idf t,d)

K

K

tf t,d t

Although we lost the ability to traverse postings list concurrently, we can significantly lower
the number of docs for which we accumulate scores:

 Pick terms to traverse in decreasing order of idf
query terms likely to contribute to final scores are considered first
we can adapt, i.e. not process / process shorter prefix, how we query terms with lower
idf by considering the impact that the previous query term had towards document
scores.

 Early termination while traversing 's postings
can be after a fixed number of docs or after drops below some threshold.

Note: this is can be thought as a generalization of index elimination and champion lists

Cluster Pruning

Construction phase:

 Pick documents at random from the collection and call these leaders
random is good because it is fast, and adequately represents the data distribution

 For each doc that is not a leader, compute nearest leaders

Query phase:

 Given a query , find leaders closest to by computing cosine similarities form to
each of the leaders.

 The candidate set is all leaders in together with their followers.

IR Components

Parametric and Zone Indexes

Fields A region with finitely-many values, e.g. date of creation, doc format

We build parametric indexes for fields. Query processing then consists (as usual) of
postings intersections, except that we may merge postings from standard inverted as well
as parametric indexes.

Zone A region of the doc that contain an arbitrary amount of text, e.g. title, abstract,
references

For zone indexing, zones can be encoded:

 as extensions of dictionary terms, e.g. william.abstract, william.title, william.author
 in the postings, e.g. 2.author, 2.title

We could also implement a weighted zone scoring, i.e. title is more important than abstract,
etc.

Query-term proximity

t

r tf t,d

√N

b1

q b2 L q q

√N

A b2 L

In free text queries, users prefer docs in which most or all of the query terms appear close
to each other. We can quantify this by letting be the number of words in the smallest
window in a document that contains all the query terms.

Idea: run one or more queries to the indexes generated by the query parser

For example, a query parser may issue a stream of queries:

 Run the user-generated query string as a phrase query
 If there are too few docs matching, run 2-term phrase queries
 Run vector space query consisting of all individual query terms
 Rank matching docs by combining contributions from vector space scoring, static quality,

proximity weighting and potentially other factors.

Complete Search System

supports free text queries, boolean, zone and field queries.

document cache: stores copy of each parsed document to generate results snippets
(snippets of text accompanying each document)

Vector space scoring and query operator interaction

How does vector space model interacts with boolean, wildcard or phrase queries studied
earlier?

Boolean queries

Vector space index can be used to answer boolean queries.

Wildcard queries

ω

d

ω

Wildcard and vector space queries require different indexes. But we can also interpret
wildcard component as spawning multiple terms in the vector space. Documents matching
more terms are likely to be scored higher.

Phrase queries

The representation of documents as vectors is fundamentally lossy (do not store the relative
order of terms).

Vector space retrieval can identify documents heavy in these 2 terms, with no way of
prescribing if they occur consecutively. Otoh, phrase retrieval tells us of the existence of the
exact phrase, without any indication of the relative frequency / weight of the phrase.

In general, an index built for vector space retrieval cannot be used for phrase queries, but
combining these 2 retrieval paradigms can be useful (See query-term proximity example).

Lecture 9 Evaluation)
book chapter

We'd like to empirically measure the impact of the techniques to the relevance of the result.

Relevance measurement requires 3 elements:

 A document collection
 A test suite of information needs, expressible as queries
 A set of relevance judgements, usually binary assessment of either relevant or non-

relevant for each query-document pair, also known as gold standard / golden truth

Relevance is assessed relative to an information need, not a query.

Information need vs query

Information need: Information on whether drinking red wine is more effective at reducing
your risk of heart attacks than white wine.

Query: wine AND red AND white AND heart AND attack AND effective

Unranked retrieval evaluation

Computed using unordered sets of documents

Basic measures for IR effectiveness:

 Precision: percentage of relevant documents amongst all retrieved documents
 Recall: percentage of retrieved documents amongst all relevant documents

It is usually a tradeoff between precision and recall. In most cases, one is more important
than the other. E.g. web surfers would want high precision, but do not care about recall
rates, while paralegals and intelligence analysts are concerned with high recall albeit lower
precision.

https://nlp.stanford.edu/IR-book/pdf/08eval.pdf

As the number of documents retrieved increases, usually precision decreases while recall
increases.

It is easy to get high precision (just get 1 relevant results) or high recall (return all
documents). Obviously that is not what we want. A single measure that trades off precision
vs recall is the F measure, which is the weighted HM of precision and recall.

A common choice is to calculate the balanced F measure . Values of can be
tweaked to emphasize precision / recall.

Ranked retrieval evaluation

Evaluation measures

Interpolated precision at a certain recall level is defined as the highest precision found for
any recall level .

Justification: Almost anyone would be prepared to look at a few more docs if it would
increase the precision of the larget set

11-point Interpolated Average Precision

For each information need, the interpolated precision is measured at the 11 recall levels of
0.0, 0.1, 0.2, ..., 1.0. For each recall level, calculate the AM of the interpolated precision of
each information need.

Mean Average Precision (MAP

If the set of relevant documents (ordered by relevance) for an information need is
 and then the Average Precision for is defined as

.

The average precision approximates the area under the uninterpolated precision-recall
curve.

MAP is an average of Average Precision over all information needs.

MAP scores normally vary widely across information needs
MAP weights each information need equally, even if some queries returns much more /
much less relevant documents than that of the others.

Precision at k

Web search, in particular, do not care about precision at all recall levels. Instead, it only cares
about measuring precision at fixed low levels of retrieved results, e.g. the 10 docs shown in
the first page. This is referred to as "Precision at 10"

R-precision

Assuming we know a set of relevant documents (can be incomplete), we calculate the
precision for the top- documents. Interestingly, the precision and recall rate for this top-

Fβ=1 = 2PR
P+R

β

r

r′ ≥ r

qj ∈ Q

{d1, … , dmj
} Rjk = {d1, d2, … , dk} qj

1
mj

mj

∑
k=1

Precision(Rjk)

R

R R

documents are the same and hence R-precision is identical to the break-even point

Although it is unclear why you should be interested in the break-even point rather than
either the best point on the curve (the point with maximal F-measure) or a retrieval level of
interest to a particular application (Precision at k), R-precision turns out to be highly
correlated with MAP empirically, despite measuring only a single point.

ROC curve

An ROC curve plots the true positive rate, i.e. recall, against the false positive rate (the
percentage of retrieved doc amongst the unrelevant).

for a good system, the graph climbs steeply on the left side
This notion is not useful for unranked retrieval, since the false positive rate would be
almost 0 as the number of unrelevant document is always so large.

NDCG

NDCG (normalized discounted cumulative gain) is designed for situations of non-binary
notions of relevance and is increasingly used with ML approaches to ranking.

For a query , let be the relevance score assessors gave to document and a
normalization factor s.t. a perfect ranking's NDCG at for query is 1. Then

Creating Test Collections For Evaluation

Aside from the document collections, we also need

 a collection of information needs: usually best designed by domain experts
 relevance assessment: time-consuming process using human judges

A human is not a device that reliably reports a gold standard judgement of relevance.
However, it is interesting to consider and measure how much agreement there is between
judges.

A common measure for agreement is the kappa statistic where is the
proportion of the times the judges agreed and is the expected proportion of the times
they would agree (usually calculated using marginal statistics)

As a rule of thumb, a kappa value >0.8 (good), 0.67 0.68 (fair), 0.67 (data cannot be
used as a basis for evaluation)
For >2 judges, we can use pairwise kappas or ANOVA.

Once we have the set of relevant / nonrelevant docs, we can vary IR systems and parameters
to carry out comparative experiments. However, some problems with this approach are:

 The relevance of 1 doc is assumed to be independent of the relevance of other doc

j ∈ Q R(j, d) d Zkj

k j

NDCG(Q, k) =
1

|Q|

|Q|

∑
j=1

Zkj

k

∑
m=1

2R(j,m) − 1

log2(1 + m)

P(A)−P(E)
1−P(E) P(A)

P(E)

 Assumption that users' information needs do not change once they start looking at
retrieval results

No distinction between relevance and marginal relevance, i.e. whether a document
still has distinctive usefulness after the user has looked at some other documents

 Assessments are binary (no nuance)
Relevance can be divided into 3 or 4 classes

 Relevance of a doc to an information need is treated as an absolute, objective decision.
 Results may not translate across domains, as it is highly dependent on our training set.

A/B Testing

Previously we have discussed benchmark testing using precision / recall / F-measures etc.
Once we have built an IR system which is used by a large number of users, we can refine the
system by employing A/B Testing. In A/B testing we direct a small proportion of trafic to a
variant system, which has exactly 1 thing changed from the current system. We then
measure to see whether the change has positive / negative effect.

Results snippets

We want to make the results list informative enough for the user. We can do this by providing
a snippet, a short summary of the document designed to allow the user to decide its
relevance.

Static summary

Key point: the summary is extracted and cached at indexing time.

Static summary is generally made of a subset of document and its metadata, e.g. the first 2
sentence, title, author etc. It can also be generated by NLP techniques such as text
summarization.

Dynamic summary

Key point: the summary is generated at query time

Display one or more "windows" on the document containing one or several of the query
terms, also known as keyword-in-context (KWIC snippets. Given a variety of keyword
occurrences, the goal is to choose fragments which are maximally informative, self-
contained, and short enough.

Usually we need to locally cache a fixed large-enough prefix (say 10k chars) of documents at
index time, to be able to quickly reconstruct the context surrounding the query words.

Lecture 10a (Query Expansion, Relevance Feedback)
Problem: in most collections, the same concept may be referred to using different words,
e.g. "aircraft" match "plane". This issue is known as synonymy.

Two major class of tackling this problem

 global methods (query expansion) : reformulating terms independent of the query and
results returned from it s.t. the new query match other semantically similar terms

 local methods (relevance feedback) : adjusts a query relative to the docs that initially
appear to match the query.

Relevance Feedback

Involves user in the retrieval process so as to improve the final result set. Generally the flow
is similar to:

 Retrieve an initial set of most relevant documents based on user query
 Let the user mark some returned docs as relevant/nonrelevant
 The IR system computes a better representation of user's information need and return a

revised set of retrieval results.

Underlying idea: We want to find a query vector that maximizes similarity with relevant docs
while minimizing similarity with nonrelevant docs.

Explicit RF

In light of partial knowledge of known relevant and nonrelevant documents, Rocchio

algorithm proposes using the modified query
where be the original query vector, and are the set of known relevant and
nonrelevant documents respectively, and .

However, since it is easy for the query to leave the positive quadrant (which is not
desirable), the Rocchio algorithm sets

In practice, relevance feedback is most useful to increase recall and positive feedback are
much more valuable than negative feedback, so most IR systems set .

When does RF work?

RF relies on the following assumptions

 User's initial query at least partially works
Can be violated when there are misspellings, cross-language IR, mismatch of
searcher's vocab with collection vocab (e.g. laptop vs notebook computer)

 Require relevant documents to be tightly clustered
Can be violated if subsets of the docs uses different vocab (e.g. Burma vs Myanmar),
disjunctive query, or instances of a general concept (e.g. felines)

However, RF is not necessarily popular with users, since it requires an extra interaction, it is
hard to explain to users why a certain doc is retrieved, and long queries generated by RF are
inefficient.

RF is also not popular in web search, because users care less about recall rate.

Pseudo RF

qm = α
→
q0 + β ⋅ Centroid(Dr) − γ ⋅ Centroid(Dnr)

−→

q0 Dr Dnr

Centroid(S) = 1
|S| ∑

s∈S
s

γ = 0

γ < β

Also known as blind relevance feedback provides an automatic (without user interaction)
technique to apply RF by assuming that the top docs returned by the initial query as
relevant, and continue to apply RF.

This technique mostly works, but can be affected by query drift.

Indirect / Implicit RF

Indirect RF is less reliable than explicit feedback, but is more useful than pseudo RF, which
contains no user judgements. Moreover, it is easy to collect implicit feedback in large
qualities in a high volume system like web search.

E.g. clicks on links were assumed to indicate that the page was likely relevant to the query,
and thus the system ranks those documents more highly. This is one form of clickstream
mining

Query Expansion

In RF, additional input (relevant/nonrelevant judgement) is given on docs, which is used to
reweight terms in the documents.
In Query Expansion, additional input (good/bad search term) is given on words or phrases

Problem: How to generate alternative / expanded queries?
Common solution: use some form of thesaurus to generate synonyms and related words.

In general query expansion increases recall, but may decrease precision when terms are
ambiguous, e.g. "interest rate" → "interest rate fascinate evaluate". Despite being less
successful than RF overall, it might be as good as pseudo RF. It also has the advantage of
being much more understandable to the user.

Methods for building thesaurus:

 Use of a controlled vocab maintained by human editors, where there is a canonical term
for each concept. It is common in well-resourced domain such as the medical domain.

 Manual thesaurus. Human editors build up sets of synonymous names for concepts
without designating a canonical term

 Automatically derived thesaurus
 Query reformulations based on query log mining : exploit manual query reformulations of

other users to make suggestions to new users. Generally used in web search.

Automatically derived thesaurus

 word co-occurrence statistics
 shallow grammatical analysis of the text, e.g. we say entities that are grown, cooked,

eaten and digested are most likely food items.

The simplest way to compute cooccurrence is based on term-term similarities in
where is the term-document matrix.

Problems:

k

C = AAT

A

term ambiguity introduces irrelevant statistically correlated terms, e.g. "apple computer" -
> "apple red fruit computer"
false positive and false negative
terms in the automatic thesaurus are highly correlated in documents → may not retrieve
many additional documents.

Lecture 10b (Structured Retrieval)
Queries in structured retrieval can be either structured or unstructured, but we will assume
in this chapter that the collection consists only of structured documents, e.g. digital libraries,
patent DBs, HTMLs, other document stored as markedup text.

Three main problems for relational DB

 An unranked system (like a DB can return a large set leading to information overload
 Users often don’t precisely state structural constraints – may not know possible structure

elements are supported
tours AND COUNTRY Vatican OR LANDMARK Coliseum)?
tours AND STATE Vatican OR BUILDING Coliseum)?

 Users may be unfamiliar with structured search and the necessary advanced search
interfaces or syntax

Solution: adapt ranked retrieval to structured documents

Challenges in XML retrieval

 Return parts of documents (but which part? instead of full documents
 What is the appropriate indexing unit?
 Redundancy caused by nested elements
 Schema diversity / structural mismatch

Vector space model for XML Retrieval

XML DOM can be visualized as a tree with text at leaves.

A simple vector space model for XML retrieval is based on lexicalized subtrees, subtrees of
the XML DOM with at least one vocab term.

Each dimensions in the vector space are lexicalized subtrees, which encode the term and
the position within XML tree. Compare this to VSM in unstructured retrieval where the
dimensions are vocab terms.

There is a tradeoff between the dimensionality of the space and accuracy of query results. If
we restrict dimensions to only vocab terms, then precision can suffer, whereas if we create a
separate dimension for each lexicalized subtrees, the dimensionality of the space become
too large (slow search).

As a compromise, we use structural term: a pair of <XML-context (path to term), term >
as the dimension.

c t

As user cannot remember the details of the schema, we interpret all queries as extended
queries, i.e. there can be any number of intervening nodes between any parent-child node
pair in the query.

Context Resemblance

A simple measure of similarity of a path in a query and a path in a document is defined
as if matches and 0 otherwise.

A variant of cosine similarity for structured retrieval

SimNoMerge(q,d) Context Resemblance x Query Term Weight x Normalized Document
Term Weight

Not a true cosine measurement as it can exceed 1.

Note: is the set of all XML contexts

An alternative similarity function is SimMerge which relaxes the conditions of query and
document by:

 Collecting the statistics for computing query term weight and document term weight from
all contexts that have a non-zero resemblance to the context in line 5.

 Merging all structural terms in the document that have a non-zero context resemblance to
a given query structural term .

 Relaxing the conext resemblance function

Evaluation of XML Retrieval

cq cd

CR(cq, cd) =
1+|cq|

1+|cd|
cq cd

B

c

cq

To evaluate relevance for CAS (content-and-structure) queries, we define component
coverage and topical relevance as orthogonal dimensions of relevance.

Component coverage: covers whether the element retrieved is "structurally" correct, i.e.
neither too low nor too high in the tree. We distinguish into 4 cases:

 Exact coverage (E � main topic and self-contained
 too small (S � main topic but not self-contained (too detailed)
 too large (L � self contained, but not main topic (too broad)
 no coverage (N

Topical relevance: highly relevant (3, fairly relevant (2, marginally relevant (1,
nonrelevant(0

The relevance-coverage combinations are quantized as follows

 1.00 if (rel, cov) = 3E
 0.75 if (rel, cov) = 2E / 3L / 3S
 0.5 if (rel, cov) = 1E / 2L / 2S
 0.25 if (rel, cov) = 1S / 1L
 0 otherwise

This evaluation scheme takes account of the fact that binary relevance judgments, which are
standard in unstructured information retrieval, are not appropriate for XML retrieval. With
this quantization function , we are able to grade a component as partially relevant. The
number of relevant items retrieved can be calculated as the sum of the relevance-coverage
combinations.

Using structure in retrieval helps increase precision at the top of results list, although recall
may suffer.

Q(rel, cov)

Q

