
CS4224
Bennett Clement

2 Partitioning

Pros Cons

Application's locality of access support Overfragmented relation

Scale to manage large data / workload
More complex integrity constraint
checking

Performance improvement with parallelized query
execution

Strategies

 Horizontal fragmentation (a.k.a. sharding)
 Vertical fragmentation
 Hybrid fragmentation

Desirable properties of fragmentation

 Completeness: Each item in can also be found in one of its fragments
 Reconstruction: can be reconstructed from its fragments
 Disjointness: Data items are not replicated

Sharding

Horizontal Fragmentation. Use filters to partition.

Techniques

 Range partitioning: using predicates on some attributes of R
 Hash partitioning:

 Modulo Hashing: put in server
 Consistent Hashing (with virtual nodes to account for differences in server's

performance and to better distribute data load)
 Primary Horizontal Fragmentation: fragmenting based on the queries, all attributes are of

the relation.
 Derived Horizontal Fragmentation: Partition a relation based on the partitioning for a

related relation .
To be complete need
To be disjoint: must be a key.

Complete Partitioning wrt Query

Let be a partitioning of relation , and let be a query on , we say is a
complete partitioning of wrt if for every fragment , either every tuple in

R

R

h(a)

R

S

R. A ⊆ S. A

S. A

F = {R1, … , Rm} R Q R F

R Q Ri ∈ F Ri

matches or every tuple in does not match .

Minterm Predicate Partitioning

Let be the predicates of the set of queries .

A minterm predicate m for is the conjunction of all the predicates in of the form
 where each is either or .

Let MTPred(P denote the set of all miterm predicates for a set of predicates .

Theorem: If is a minterm predicate partitioning of that is equivalent to MTPred(P, it is
also a complete partitioning wrt every query in .

Vertical Fragmentation

Use projection to split columns into different fragments.

Can use attribute affinity measure to measure how often attributes are referenced
together in queries, and apply clustering algorithm on

3 Storage
LSM Log-Structured Merge) Storage is the most common used storage for distributed db. It
improves write throughput by "converting" random I/O to sequential I/O (leveraging append-
only updates instead of in-place updates)

Components

LSM Storage for a relation RK,V consists of :

 A main-memory structure MemTable
contains the most recent updates
updated in-place (deleting records = marking it as tombstones)
When the size of MemTable reaches a certain threshold, the records in MemTable are
sorted and flushed to disk as a new SSTable.

 A set of disk-based structures SSTables Sorted String Tables)
immutable structures, sorted by relation's key K
each SSTable is associated with a range of key values and a timestamp (for ordering of
SSTable)

 A commit log file
each new update is appended to commit log & updated to MemTable

Overtime, the SSTable records might be fragmented, and there might be a lot of tombstones
& stale values (as we always append updates, and not update in-place).

Compaction

STCS Size-tiered Compaction Strategy)

Q Ri Q

P Q

P P

m = p∗
1 ∧ p∗

2 … p∗
n p∗

i pi p̄i

P

F R

Q

aff(Ai, Aj)

aff(Ai, Aj)

SSTs are organized into tiers with SSTs in each tier having approximately the same size
(larger as higher tier number).
The SST in Tier 0 all have same size, since they all come from MemTable
Compaction is done by merging all SSTs in tier to a single SST in tier using a k-
way merge
Compaction is triggered at tier when the number of SSTs reaches a threshold

Cons: overlapping key ranges makes it slower to search as we potentially need to look at all
SSTs.

LCS Leveled Compaction Strategy)

SSTs are organized into a sequence of levels
For each level

Each SST has the same size and do not have overlapping key ranges
Each SST at level overlaps with at most (compaction factor) SSTs at level

Compaction is done by:
:

Select an SST at level that starts after (wrap-around) the ending key of the last
compacted table at level .
Merge with all overlapping SSTs at level
Pack as many KVs into a SST except if the current SST is full or adding another KV
will violate the compaction factor property.

 Merge all SSTs at level 0 with all overlapping SST at level 1.
Compaction is triggered when:

 When (total size of all level- SSTs)
 : the number of level-0 SST reaches a threshold (e.g. 4

Searching

Searching is done from the MemTable, level-0, level-1, ... Each level goes from the latest
timestamp to the earliest.

Each SST is stored as a file consisting of a sequence of data blocks. To optimize search we
can do two things:

Sparse Index

How to quickly locate SST block for a given search key?

We can build a sparse index for each SST where is the first key value in the
i-th block of the SST.

Bloom Filter

How to quickly determine whether a search key exists in a SST block?

We can build a bloom filter for each block. Note that bloom filter might have false positives
but cannot have false negatives. Also, bloom filter is space efficient.

L L + 1

L

L ≥ 1

L F L + 1

L ≥ 1

S L

L

S L + 1

F

L = 0

L ≥ 1 Size(L) L > F L

L = 0

[k1, k2, ⋯ , kn] ki

Indexing

 Local indexing:
Build an index based on the local data.
Updates are cheap, but search might need to hit all nodes (expensive)

 Global indexing:
Build an index based on global data (not related to local data in the node)
Updates are expensive, but search might be cheaper (depends on the number of
nodes accessed to get the data requested)

4 Distributed Commit
Review:

 Recovery (undo, redo, commit, abort, restart: redo + undo)
 WAL don't flush an uncommitted update until the log record containing its before-image

has been flushed to the log
 Force-at-commit: Commit a xact only after the after-iamges of all its updated pages are in

stable storage (log or disk)

Define

Originating site: site where Xact is initiated
Xact coordinator (TC transaction manager (TM at originating site
Failures in DDBMS

Site failures: fail stop model (a site is either working correctly or not working at all)
Communication failures: lost messages / network partitioning

Log Records:
Forced: if log record must be flushed to disk before sending msg
Non-Forced: asynchronous write to log

Termination protocol: How operational sites deal with failures (detected with a timeout)?
non-blocking property: permits a transaction to terminate at operational sites without
waiting for recovery of the failed site

Recovery protocol: How a failed site recovers after being restarted?
independent property: can determine how to terminate previously running xacts
without having to consult any other site

Two-Phase Commit (2PC

 Voting Phase: PREPARE  Vote-Commit/Vote-Abort
 Decision Phase: Global-Commit/Global-Abort + ACK

Green arrows are forced-writes. Black arrows are non-forced writes.

2PC is synchronous within 1 state transition, i.e. no site leads another site by more
than 1 state transition during 2PC execution.

Recovery Protocol

fails in Coordinator Participants

INITIAL Resumes in INITIAL state Aborts xact unilaterally

WAIT/ READY
Send PREPARE messages
again

Sends Vote-Commit to
Coordinator

COMMIT/
ABORT

Sends Global decision to all Do nothing

Basic Termination Protocol

timeout in Coordinator

WAIT Waiting for votes; Writes an abort record in log; Sends Global-Abort

COMMIT/ ABORT Waiting for ACK; Sends Global decision to unresponsive participants

timeout in Participants

INITIAL Waiting for PREPARE; Abort xact unilaterally

READY Waiting for Global decision; Blocked!

Cooperative Termination Protocol

Goal: reduce probability of blocking by failed coordinator by communicating with other
participants.

 Coordinator includes addresses of all participants in PREPARE msg
 When participant timeouts in READY state, send DECISIONREQUEST msg to all other

participants
 Upon receiving a DECISIONREQUEST msg, send ABORT if in INITIAL, UNCERTAIN if in

READY, and Global decision if in COMMIT/ABORT
 Terminates the xact with COMMIT/ABORT if not all send UNCERTAIN
 Inform every participant that replied UNCERTAIN with the global decision.

Three-Phase Commit (3PC

Guarantees: In the absence of communication failure & total site failure, 3PC is non-blocking

 Voting phase: PREPARE  Vote-Commit/Vote-Abort
 Dissemination phase (if there is no ABORT vote): Prepare-to-Commit + Ready-to-Commit
 Decision phase: Global-Commit/Global-Abort + ACK

3PC uses more forced-write than 2PC

3PC is synchronous within 1 state transition if there is no failure

Recovery Protocol

fails in Coordinator Participants

INITIAL
Asks some participant for
xact outcome

Aborts xact unilaterally

P

fails in Coordinator Participants

WAIT/ READY/
PRECOMMIT

Asks some participant for
xact outcome

Asks some participant/ coordinator
for xact outcome

COMMIT/ ABORT Do nothing Do nothing

Termination Protocol

timeout in Coordinator

WAIT Waiting for votes; Writes an abort record in log; Sends Global-Abort

PRECOMMIT
Sends Prepare-To-Commit to unresponsive; Writes commit record to log;
Sends Global-Commit to operational

COMMIT/
ABORT

Waiting for ACK; Sends Global decision to unresponsive participants

timeout in Participants

INITIAL Waiting for PREPARE; Abort xact unilaterally

READY
Waiting for Global decision; Execute New Coordinator Termination
Protocol

PRECOMMIT
Waiting for Global-Commit; Execute New Coordinator Termination
Protocol

New Coordinator Termination Protocol

 Operational participants elect a new coordinator
 sends STATEREQUEST msg to operational participants
 Terminates the xact:

 some in COMMIT � sends Global-Commit to all operational
 none in PRECOMMIT � sends Global-Abort to all operational
 resumes in WAIT state by resending Prepare-to-Commit msgs

Some results:

Any participant/coordinator that fails and then recovers while the termination protocol
is in progress, will not be allowed to re-participate in the termination protocol.
It is possible for the global decision to abort even though a participant is in PRECOMMIT
state

5 Concurrency Control
Review:

serial schedule, view equivalent (same results for reads & same final writes), view
serializable schedule, conflict equivalent, conflict serializable schedule, recoverable
schedule (commit after all deps committed)

C ′

C ′

C ′

X

2PL (grow + release phase) schedules are conflict serializable
strict 2PL 2PL but hold locks until xact terminates) are conflict serializable and
recoverable
Deadlock: Detection (waits-for graph) + Prevention (wait-die, wound-wait)

MVCC Multiversion Concurrency Control)

Definition.

Let creates a new version of x denoted by .
In a multiversion schedule, if there are multiple versions of an object , a read action on

 could return any version.
Schedules and are multiversion view equivalent if they have the same set of read-
from relationships.
A monoversion schedule is a multiversion schedule that returns the most recently
created object version
A multiversion schedule is a multiversion view serializable schedule MVSS if there
exists a serial monoversion schedule that is multiversion view equivalent to .

Theorem. A view serializable schedule (VSS is an MVSS.

Note: the VSS must be a monoversion.

Snapshot Isolation

Each xact is associated with a start timestamp and a commit timestamp.

Two xacts are concurrent if their [startTS, commitTS interval overlaps.

Concurrent Update Property. If multiple concurrent xacts updated the same object, only
one of xacts is allowed to commit.

 First Committer Wins (FCW check if there exists a committed concurrent xact that has
updated some object that modified.

 First Updater Wins (FUW updater hold X-lock for all objects updated. Also needs to
check if has been modified by a committed concurrent xact.

Anomalies

SI does not guarantee serializability. Some anomalies:

 Write Skew Anomaly
 Read-Only Xact Anomaly

Garbage collection

A version of object may be deleted if there exists a newer version , i.e.
commitTS(T_i) < commitTS(T_j) such that every active xact starts after commitTS(T_j)

Distributed Transactions

Wi(x) xi

X

X

S S ′

S

S

S

T

T ′

T

O

O

Oi O Oj

Define

Originating site: site where Xact is initiated
Xact coordinator (TC transaction manager (TM at originating site
Local schedule: xact schedule at a local site
Global schedule: schedule for which each local schedule is a subsequence of .

Theorem. A global schedule is serializable if each local schedule is serializable, and the
local serialization orders are compatible.

Lock Based Protocol

Centralized 2PL one site designated as central site. Xact coordinator makes lock requests /
releases to central TM

Distributed 2PL Locks are managed collectively by each site's lock manager.

Distributed Deadlock Detection

Centralized Approach:

 Each site maintains a local Wait-For Graph (LWFG
 Periodically, each site transmits its LWFG to the deadlock detector. The deadlock detector

constructs a global Wait-For Graph (GWFG and looks for cycles in it.

Snapshot Isolation in Distributed Settings

Key Challenge: How to sync timestamps in distributed environment

Centralized Snapshot Isolation (CSI � similar to First Updater Wins (FUW

One site is designated as Centralized Coordinator (CC, responsible for assigning
timestamps (start & commit)
Write locks are managed collectively (distributed lock)
To start a new xact , send a request to CC for : (1 commit timestamp of last commited
Xact → used to determine object versions to be read, 2 start timestamp for
Modified 2PC Protocol: when commit participants receives a PREPARE msg (which
includes startTS and commitTS), also check for any WW-conflicts between and all
committed concurrent xacts. If there is any, vote ABORT.

6 Data Replication
Key Question: How to keep replicas in sync?

Definition

An execution is one-copy serializable 1SR if there exists a serial execution on a non-
replicated (one-copy) database with the same effect.
A replicated database is mutually consistent if all the replicas of its data items have
identical values

Strong MC  all copies of data are consistent at the end of update xact

S Si S

S Si

T

T

T

Weak MC do not require all copies of data to be consistent at the end of update xact

Replication Methods

DBMS-level replication

Statement-based replication: foward SQL statements to replica
WAL shipping: send T's log records to replica sites for sync

physical replication: storage-based specs of updates (e.g. location of modified bytes
on disk block)
logical replication: row-based specs of updates

Application-level replication

Replication Protocols

Assume: strict 2PL Concurrency Control, statement-based replication

When are updates propagated to copies?

Eager : propagates updates to all replicas within context of xact.
Enforces strong mutual consistency
Always produce 1SR schedules

Lazy: Xact updates only 1 replica; others are updated asynchronously using refresh xact.
Weak Mutual Consistency
Might produce non-1SR schedules

Where are updates allowed to occur?

Centralized: Update is applied to a master copy first
Distributed: Update is applied to any copy

Refresh Xacts

Refresh xacts are to be applied to all slave sites in the same order, by ordering its
timestamp = commitTS(T_i)

Note:

Reads always try to read from its own replica if it exists

Eager Centralized Protocols

Eager Single-Master: a protocol where master copies for all obejcts are stored in a single
master site. Described below is for the Eager Primary Copy protocol

Key Idea: for each object , a single master site containing the master copy and its TM
functions as the centralized lock manager.

Eager Distributed Protocols

T r
i

TS(T r
i)

O

Difference from Eager Primary Copy: query local site's lock manager is enough. Each site
runs a lock manager controlling locks for its local replicas.

Lazy Centralized Protocols

Difference from Eager Single-Master:

 No need to directly execute writes in slaves
 When commits, notify master site, who will commit, release locks for , grants X-locks

for 's refresh xacts, and send refresh xacts to slave.

Lazy Distributed Protocols

Combine differences of Lazy Centralized and Eager Distributed :)

Might result in inconsistent updates: multiple xacts update different copies of same data
concurrently at different sites

Reconciliation of Inconsistent Updates

Assume updated-values replication, we can use

Last Writer Wins Heuristic: Ignore if we have received a bigger timestamp for another
refresh xact updating the same data.

works only for blind writes (new value of x is independent of its previous value). Non-
blind writes suffer from lost updates anomaly

Quorum Consensus

Previously we assume read from one, write to all (ROWA, but we can vary adjust the read
thresholds and write thresholds.

Assign a weight to each copy of object . Let be the total weight of all copies
of . Let be the read and write thresholds respectively. The constraints given
are:




The intuitions for the 2 constraints are such that for any conflicting operations, there is at
least 1 replica in which the conflicting ops overlaps, and so we can use the order of
execution in that replica to deduce the order of execution of the global transactions.

To read an object , return the copy with the highest version number among the read
quorum
To write an object , write all copies to the quorum with version number set to the
quorum's highest version number + 1.

Failure handling for single-master replication

Failure of slave sites

T T

T

T r
i

W(Oi) Oi O W(O)

O Tr(O), Tw(O)

Tr(O) + Tw(O) > W(O)

2Tw(O) > W(O)

O

O

Lazy: sync unavailable replicas later once they're available
Eager: relax write all constraint to write to all available → and sync unavailable replicas
later

Failure of master sites: elect a new master site

 Choose a partition P to remain available
 Simple algorithm: choose P to be the partition that contains an operational master site
 Majority Consensus algorithm: choose P where
 Quorum Consensus algorithm: Assign each replica a non-negative weight. Choose P if

the total weight of the partition exceeds half the total weight of all the replicas.
 If P does not contain an operational master site, elect a new master site in P using some

consensus algorithm (see Raft)

7 Raft
Fault-tolerant Replicated State Machine.

Server states, Terms

Logs, Log Inconsistencies, Log Completeness

|P | > ⌊N/2⌋

's log is more complete than 's log if (X.lastLogTerm, X.lastLogIndex) >
(Y.lastLogTerm, Y.lastLogIndex) . In figure 7, d > c > a > e > b > f

Committed Entries

X Y

A log entry is directly committed once the leader that created the entry has replicated it
to a majority of servers
All log entries preceding a directly committed entry are indirectly committed

Once an entry is committed:

Leader execute command in its state machine & return results to client
Notifies followers of committed entries in subsequent AppendEntries
Followers execute committed commands in their state machines

Leader election

RequestVote(candidateId, candidateTerm, lastLogIdx, lastLogTerm) -> (term,

voteGranted?)

Become candidate if it receives no heartbeat over a time period
Begin election: increment current term + send RequestVote to all other servers +
chooses an election timeout duration randomly from [T, 2T T  avg send-receive time)
Wins the election if it receives votes from a majority of the servers

Vote for at most 1 candidate (first-come first-serve) in a term→ guarantees Election
Safety Property

Votes for candidate if 's log is more complete than its own log AND it has not voted
before in the current term → guarantees Leader Completeness Property
Once elected, establishes authority by sending heartbeat msgs

If it receives AppendEntries from another server with term its own term, recognizes
the leader as legit and return to follower state
If election timer times out, begin new election

Server states

persistent state: currentTerm, votedFor, logs[]
volatile state on all servers:

commitIndex : idx of highest log entry known to be committed
lastApplied : idx of highest log entry applied to state machine

volatile state on leaders: nextIndex[], matchIndex[]
nextIndex[] stores index of next log entry to send to that server, initialized to leader's
last index + 1
matchIndex[] stores index of highest log entry known to be replicated on server,
initialized to 0

AppendEntries

AppendEntries(leaderId, leaderTerm, leaderCommitIdx, prevLogIndex, prevLogTerm,

entries[]) -> (followerTerm, success?)

Follower must contain matching entry; otherwise will reject AppendEntries and
leader retries with lower prevLogIdx
Follower will also update its commitIndex to min(leaderCommit, index of last
entry)

Timers: Election Timer, Leader Timer, Client Timer

Additional Rules

For all servers:

If commitIndex > lastApplied → increment lastApplied and apply log[lastApplied]
to state machine
If an RPC's term > currentTerm → currentTerm = T , convert to follower

For leaders:

C C

≥

F F

F

Send empty AppendEntries upon elected and during idle period
If received command from client → append entry to local log and respond to client after
entry has been applied to state machine
If lastLogIndex >= nextIndex[F] → send AppendEntries
If exists N > commitIndex AND a majority of matchIndex[i] >= N AND log[N].term =
currentTerm → set commitIndex = N

Properties

 Election Safety: at most one leader can be elected at a given term
 Leader Append-only
 Log Matching: if 2 logs contain an entry with the same index and term, then the logs are

identical in all entries up through the given index
 Leader Completeness: If a log entry is committed in a given term, then that entry will be

present in the logs of the leaders for all higher-numbered terms
 State Machine Safety: If a server has applied a log entry at a given index to its state

machine, no other server will ever apply a different log entry for the same index.

8 Replicated Data Consistency
Levels of consistency

 Strong consistency: see all previous writes.
 Consistent Prefix: see an initial sequence of writes
 Bounded Staleness: (a.k.a bounded CP see all "old enough" writes
 Monotonic Reads: see increasing subset of writes (over multiple reads)

states read might not exist historically
 Read My Writes: See all writes performed by reader.

non-writer behavious is similar to eventual consistency.
 Eventual consistency: See subset of previous writes.

Pileus - A deepdive

KV store, range-partitioned on keys
replicated using lazy centralized replication protocol (all writes to primary sites and
propagated in-order to secondary sites)
Distributed Snapshot Isolation protocol for CC, each xact get a readTS and a commitTS
(complements discussion in Lec 5
In Pileus, each session contains 1 or more transactions. Scopes for RMW and MR are
per session. Each transaction can specify a different consistency level.

Tunable consistency levels

strong consistency: see all xacts before readTS
consistent prefix consistency: see results of an arbitrary prefix of committed xacts
read my writes: see the results of all previous Puts in the current session to objects
accessed by T
monotonic reads: readTS >= all previous Gets in the current session.
bounded(T see all xacts before readTS - T

causal consistency : readTS >= all previous Gets & Puts in the current session.
T1  T2 if

T2 is executed after T1 in the same session
T2 reads some object written by T1
T1 & T2 Puts on the same object, and commitTS T1  commitTS T2
exists T3 s.t. T1  T3  T2.

Storage:

Servers maintain: Maintain key-range, highTS (commitTS of last processed xact), lowTS
(timestamp of most recent pruning operation)
Old data versions are periodically pruned by increasing lowTS . Last version with
commitTS <= lowTS is kept.
Client maintain: key-range[S], latency[S], highTS[S] , commitTS of previous Puts in
the session, commitTS of versions returned by previous Gets.

Operations

Put(k, v)  Put ops by T are buffered at client and is only visible to T while T is active.
Get(k) , i.e. Get(k, readTS(T)) .

a server S checks whether readTS is within its time range, and return (v,
v.commitTS, S.highTS) where v.commitTS < readTS(T)

Choosing readTS(T) :

 Determine MARTS(T) Minimum acceptable read timestamp) ← depends on the
consisteny level requested

 Define a mapping from in key-set(T  to its "closest" server , i.e. server
with lowest latency that has highTS >= MARTS(T) . On a tie, choose higher highTS to
reduce staleness.

 Then, readTS(T) = min { highTS[S_i] | S_i}

EndTx: details see slide. TLDR Similar to 2PC with an additional TS negotiation step
(prepare-commit → propose TS � agree on max TS � vote-commit/abort, while validating
+ updating logical clock with max(local clock timestamp, commitTS + 1) → commit)

Commit Coordinator (CC  one of the primary servers with data updated by T (commit
participants)
PutSet is partitioned based on the primary servers.
commitTS is max proposedTS from all commit participants.
pending queue: transaction in the process of committing, added during propose TS step.
(PutSet_i , proposedTS)
propagating queue: tx added after global decision. new object versions to be asyncly
send to secondary servers
Such pending transactions might block other requests: Get(k) , validation request,
replicating updates.

9 Query Processing
Cost model:

f ki {k1, … , kn} Si

 CPU & IO cost of joining relations and
 Communication cost of sending relation from one site to another

Query rewriting

query decomposition
 Normalization using Conjunctive NF CNF or Disjunctive NF DNF
 Simplify using relational algebra equivalence
localization: rewrites distributed query into localized query

Distributed Join Execution

Assume and have been partitioned over all the nodes. Consider . Let be the
size of table in bytes.

 Collocated/Local Join: if both and have been partitioned on .
Cost: 0

 Directed Join: If one of the tables (wlog) has been partitioned on .
We dynamically repartition on join key . Cost:

 Broadcast Join: Replicate table to all nodes.
Cost:

 Repartitioned Join: Neither tables are partitioned on .
Cost:

10 Query Optimization
Cost model:

Cost model for each operator's algorithms
Estimation assumptions:

Uniformity assumption: uniform distribution of attribute values
Independence assumption: independent distribution of values in different attributes
Inclusion assumption: inclusion dependency between join columns

Database stats: attribute size, tuple size, number of tuples, relation size, number of
distinct values of an attribute, attribute's max / min

X Y

X

R S R ⋈A S ∥S∥

S

R S A

R A

S A ∥S∥

S

(n − 1) × ∥S∥

A

∥R∥ + ∥S∥

Size estimates

Result cardinality = Max number of tuples x product of all selectivity

Assumption 1 Uniformly distributed over all distinct values in a column.

 col = value → sel = 1 / NKeys(I
 col1  col2 (handy for joins too) → sel = 1 / Max(NKeys(I1, NKeys(I2
 col > value → sel = (High(I  value) / High(I  Low(I  1

Assumption 2 Independent Predicates

Selectivity of AND  product of selectivities of predicates

Semijoin Optimization

A tuple is a dangling tuple w.r.t. if does not join with any tuple in .
 eliminates dangling tuples in

Selectivity of semijoin  NKeys(S, A / range domain of A.

Total Cost: CPU Cost + I/O Cost + Communication cost (number of msgs + size of
transferred data)

Suppose we plan to do . To minimize size of transferred data, we often do a local
semijoin first. A semijoin is beneficial if cost of sending < not sending
dangling tuples : . SF is the selectivity factor)

SDD1 Algorithm

Semijoin-based approach to minimize total communication cost.
Idea:

 Generate all possible semijoin reductions.
 Iteratively select a sequence of semijoin reductions starting from the most beneficial

(compare benefit-cost) while updating stats (multiplying size, NKeys with sel)
 Determine assembly site to compute joins (compare communication cost)
 Post-optimization: eliminate unnecessary semijoin reductions
 Execute plan.

Full Reducer

Motivation: Given a join query on a database , is there a fixed sequence of semijoins to
eliminate all dangling tuples wrt for any instance of ?

Such sequence of semijoins is called a full reducer for .

We can represent a query as a hypergraph:

each node represents an attribute
each hyperedge represents the set of attributes in a relation.

Selectivity of OR  sum of selectivities of predicates - product of selectivities of
predicates
Selectivity of NOT  1  selectivity of predicates

Assumption 3 Preservation of value sets

For joins , then

NKeys(U, A  min { NKeys(R1, A, NKeys(R2, A 
NKeys(U, B  min { | U | , NKeys(R1, B .

U = R1(A, B) ⋈ R2(A, C)

t ∈ R R ⋈ S t S

R ⋉A S R

R ⋉A S = R ⋈A πA(S) = πattribute(R)(R ⋈ S)

R ⋉A S

R ⋈A S

∥πA(S)∥ + Tmsg

∥R∥ × (1 − SF(R ⋉A S))

Q D

Q D

S Q

A hyperedge is an ear if there exists some other hyperedge s.t. every node in is
either found only in , or also found in . In this case, we say consumes .
An ear reduction is the elimitation of 1 ear from the hypergraph along with any nodes that
appear only in that ear.
A hypergraph is acyclic if it can be reduced to a single hyperedge by a sequence of ear
reductions.

Theorem. A full reducer exists for a join query iff its hypergraph is acyclic.

FullReducer(Acyclic_Hypergraph G)

 If | G | = 1: return.

 Let e be ear in G consumed by e'

 e & e' corresponds to relation R & R'

 yield R' SEMIJOIN R

 FullReducer(G' = G with e removed)

 yield R SEMIJOIN R'

e e′ e

e e′ e′ e

