Basic Results

Union Bound. Let $E_{1}, E_{2}, \ldots, E_{n}$ be a collection of events. Then $\operatorname{Pr}\left(\bigcup_{i=1}^{n} E_{i}\right) \leq \sum_{i=1}^{n} \operatorname{Pr}\left(E_{i}\right)$.
Useful to bound the probability of at least 1 bad events happening.
Markov's Inequality. $P(|X| \geq a) \leq \frac{E\left[|X|^{n]}\right.}{a^{n}}$ for $a>0$ and some $n \in \mathbb{N}$
Well known. $\frac{1}{e^{2}} \leq\left(1-\frac{1}{x}\right)^{x} \leq \frac{1}{e}$. The first inequality is correct for $x>2$.
Hoeffding Bound. If $Y_{1}, Y_{2}, \ldots, Y_{s}$ are independent RV in the range $[0,1]$, define $Z=\sum_{j=1}^{s} Y_{j}$, then $\operatorname{Pr}[|Z-E[Z]| \geq \delta] \leq 2 e^{-2 \delta^{2} / s}$

Note: make sure Y_{i}-s and Z satisfy the requirements before using this technique
Chernoff Bound. If $Y_{1}, Y_{2}, \ldots, Y_{s}$ are independent RV in the range $[0, a]$ for some constant s, define $Z=\sum_{j=1}^{s} Y_{j}$ and $\mu=E[Z]$ then for all $0 \leq \delta \leq 1$,

1. $\operatorname{Pr}[Z \geq(1+\delta) \mu] \leq e^{-\mu \delta^{2} /(3 a)}$
2. $\operatorname{Pr}[Z \leq(1-\delta) \mu] \leq e^{-\mu \delta^{2} /(2 a)}$

Chebyshev. Let X be an RV. For any real number $k>0, \operatorname{Pr}(|X-E[X]| \geq k) \leq \frac{\operatorname{Var}[X]}{k^{2}}$

Sublinear Sampling Algorithms (1-3)

Approximate solutions:

1. Relative error: $M S T(G)(1-\epsilon) \leq A L G(G) \leq M S T(G)(1+\epsilon)$
2. Absolute error: $M S T(G)-\epsilon \leq A L G(G) \leq M S T(G)+\epsilon$
3. Gap error:

- If G is connected, return TRUE.
- If G is ϵ-far from connected, return FALSE.
- Otherwise, don't care

Key Idea:

- find a local cost (or anything you can sample locally) to learn about large parts of the graph.

All-Zeros?

```
AllZeros(A, &):
    Repeat s = 2/\varepsilon times:
        Choose random i in [1, n]
        If A[i] == 1: return FALSE
    return TRUE
```

Using ($\left.1-\frac{1}{x}\right)^{x} \leq \frac{1}{e}$, we can prove Gap Error, i.e.

1. If the array is all zeros, we always return TRUE
2. If the array has $\geq \epsilon n$ ones, we will return FALSE w.p. $\geq 2 / 3$

How many ones?

```
FractionOnes(A, \varepsilon):
    sum = 0
    Repeat s = 1/ /^^2 times:
    Choose random i in [1, n]
    sum = sum + A[i]
return sum / s
```

Let f be the fraction of ones in the array. Using Hoeffding Bound, we can prove that \mid sum $/ s-f \mid \leq \epsilon$ w.p. $\geq 2 / 3$.

Is the graph connected?

Graph G has n nodes, m edges. Each node has a maximum degree of d. A good algorithm for sparse undirected graphs runs in $O\left(1 / \epsilon^{2} d\right)$ time to output Gap-Error w.p. $>2 / 3$

```
Connected(G, n, d, \varepsilon)
    Repeat 16/\varepsilond times:
        Choose random node u.
        Do a BFS from u, stopping after 8/\varepsilond nodes are found.
        If CC of u has \leq 8/\varepsilond nodes: return FALSE.
    Return TRUE
```

Key Ideas:

1. If G is ϵ-far, then there are $\geq \epsilon d n / 4$ connected components
2. If G is ϵ-far, there are at $\geq \epsilon d n / 8 \mathrm{CC}$ with size $\leq 8 / \epsilon d$. (In simple words, there are many small CC if G is ϵ-far)
3. Stop early with the BFS. The BFS runs in $O(d \times 8 / \epsilon d)=O(1 / \epsilon)$

Insights:

Why is the definition of ϵ-close based on $\epsilon n d$ entries?

Intuition: we want to count how many edges do we need to add s.t. the graph is connected. Observe that $n d$ is the total degree of the graph (twice the edges) and so the maximum number of edges we can add is $n d / 2$. So, it is natural that we use $\epsilon n d$ as our definition

The running time is $O\left(1 /\left(\epsilon^{2} d\right)\right)$. It seems that if d is larger, the running time will be smaller?

If d is larger, say $d \rightarrow n$, then for the problem to be interesting, we should have $\epsilon<1 / n$ (why? See our definition of ϵ-far). This implies that our running time goes to $O(n)$ as d goes to n (not desirable).

Number of connected components

Running time : $O\left(d(\ln (1 / \delta)) / \epsilon^{3}\right)$ to output C s.t. $|C C(G)-C| \leq \epsilon n$ w.p. $\geq 1-\delta$

```
sum = 0
for j = 1 to s = 4/\varepsilon^2:
    Choose u uniformly at random.
    Perform a BFS from u; stop after seeing 2/\varepsilon nodes.
    if BFS found > 2/\varepsilon nodes:
        sum = sum + &/2
    else if BFS found n(u) nodes:
        sum = sum + 1/n(u)
return n * (sum/s)
```


Key Ideas:

1. For all nodes u, define $\operatorname{cost}(u)=1 / n(u)$ where $n(u)$ is the number of nodes in the CC containing node $u . \rightarrow \sum \operatorname{cost}(u)$ is the total number of CC in the graph
2. Sampling: Use Hoeffding to get $\operatorname{Pr}(\mid$ sum $-E[s u m] \mid \geq \epsilon s / 2) \leq 1 / 3$
3. Approximating $\operatorname{cost}(u) \rightarrow$ by stopping early if CC is large.

Insights

Why is the definition of ϵ-close based on ϵn ?

Intuition: The maximum number of CC we can have is n.

MST Weight

Problem setting: undirected connected weighted graph with n nodes, m edges, maximum degree d and max weight W. Output M s.t. $M=M S T(G)(1 \pm \epsilon)$ in $O\left(\left(d W^{4} \log W\right) / \epsilon^{3}\right)$

```
sum = n - W
for j = 1 to W - 1:
    sum += ApproxCC(G_j, d, &', \delta) where }\mp@subsup{\varepsilon}{}{\prime}=\varepsilon/W\mathrm{ and }\delta=1/(3W
return sum
```


Key Ideas

1. $\operatorname{MST}(G)=n-W+\sum_{j=1}^{W-1} C_{j}$ where C_{j} is the number of connected components in G_{j}, graph containing edges with weight $\leq j$.
2. $\operatorname{MST}(G) \geq n-1>n / 2$ to change additive approximation to multiplicative approximation.

Maximal Matching

We know that maximal matching gives a 2-approximation of the maximum matching.
Algorithm (runs in $O\left(e^{d} / \epsilon^{2}\right)$ time):
Choose a random permutation for the edges, e.g. assign a hash value to each edge

```
def query(e):
    for all neighbors e' of e:
        if hash(e') < hash(e) && query(e'):
            return FALSE
    return TRUE
sum = 0
for j = 1 to s:
    Choose an node u uniformly at random.
    if query(e) = True for all adjacent edge e of u:
        sum += 1
return (1/2) * n * (sum / s)
```

Query takes expected time: $\sum_{i=1}^{\infty} 2 d^{k} / k!=O\left(e^{d}\right)$
The algorithm returns 0.5 because each edge in M have 2 endpoints.

Yao's Min-Max Principle for Lower Bounds

The expected cost of a randomized algorithm on its worst-case input is no better than the expected cost for a worst-case probability distribution as the inputs of the deterministic algorithm that performs best against that distribution.

Recipe

1. Choose a distribution γ
2. Show that the expected cost of every deterministic algorithm on input from γ is slow
3. Conclude that every randomized algorithm has at least one input with expected cost just as slow.

Property Testing Version: replace expected cost with probability algorithm is wrong, i.e. if there exists a distribution γ of inputs s.t. the probability of $A(x)$ is wrong $>1 / 3$ for every deterministic algorithm A with query complexity q, then for every randomized algorithm B of query complexity q, there exist an input x s.t. the probability of $B(x)$ is wrong $>1 / 3$.

Sketching and Sampling (4-6)

The space in streaming algorithms counts the number of bits to store the entire DS. e.g. $n \in \mathbb{N}$ is stored in $\log n$ bits.

Item Frequencies / Heavy Hitters

Given a stream of items $s_{1}, s_{2}, \ldots s_{m}$, find in small space:

1. count(x) : $|N(x)-\operatorname{count}(x)| \leq \epsilon m$
2. heavy hitters: return
3. every item that appears $\geq 2 \epsilon m$ times.
4. no item that appears $<\epsilon m$ times.

Misra-Gries Algorithm

```
Set P of <item, count> pairs
For each u in stream S
    if <u, c> in P: increment c
    else: add <u, 1> to set P
    if | P | > k, decrement c for each item in P
    remove all items from P with c = 0
Count(x) = c if <x, c> in P else 0
```

Space: $O(k \log m)$
Correctness: $N(x) \geq \operatorname{count}(x) \geq N(x)-m / k$
Taking $k=1 / \epsilon$ and life is good.
Heavy hitters : return all item that appears $\geq 2 \epsilon m$ times, but no item that appears $<\epsilon m$ times

- Solution: return x if $\operatorname{count}(\mathrm{x}) \geq \epsilon m$

Insight:

1. Misra-Gries cannot differentiate elements that appear a small number of times, i.e. an element that appear zero times / once looks the same to MG.

Counting distinct elements

Given a stream of items $s_{1}, s_{2}, \ldots s_{m}$, find in small space:

1. distinct (ϵ) : $(1 \pm \epsilon)$ approximation with probability at least $(1-\delta)$

Flajolet-Martin (FM) Algorithm

```
Let x = 1, and h(u) in [0, 1]
For each u in stream S:
    if h(u) < x: x = h(u)
Return -1 + 1/x
```

Tricks:

1. Use a hash function: to randomize the items
2. Use the minimum of a set of RV.

We can prove that $E[X]=\frac{1}{t+1}$ and $\operatorname{Var}(X) \leq \frac{1}{(t+1)^{2}}$ using X as a continuous RV.
If we apply Chebyshev directly, we get
$\operatorname{Pr}\left[\left|X-\frac{1}{t+1}\right| \geq \epsilon\left(\frac{1}{t+1}\right)\right] \leq \operatorname{Var}(X) \frac{(t+1)^{2}}{\epsilon^{2}} \leq \frac{1}{e^{2}}$
However the right hand side is still too big (Note that $\frac{1}{e^{2}}>1$).
To make it smaller, we can repeat FM a times and take the average. (reducing variance by $1 / a$)

FM+ Algorithm

1. Run a copies of FM-subroutine. get $X_{1}, X_{2}, \ldots, X_{a}$
2. Compute average $Z=\frac{1}{a} \sum_{j=1}^{a} X_{j}$
3. Return $-1+1 / Z$.

Using basic probability, we can prove that $E[Z]=\frac{1}{t+1}$ and $\operatorname{Var}(Z) \leq \frac{1}{a(t+1)^{2}}$
Now we have $\operatorname{Pr}\left[\left|Z-\frac{1}{t+1}\right| \geq \epsilon\left(\frac{1}{t+1}\right)\right] \leq \frac{1}{a e^{2}}$. Taking $a=\frac{4}{e^{2}}$, the RHS $\leq 1 / 4$
Using the fact that for $0<x<1 / 2, \frac{1}{1-x} \leq 1+2 x$ and $\frac{1}{1+x} \geq 1-x$, we have $-1+1 / Z \in t(1 \pm 4 \epsilon)$ w.p. $\geq 3 / 4$.

To make the probability bigger, we can repeat FM+ b times and take its median. (amplifying probability)

FM++ Algorithm

1. Run b copies of $\mathrm{FM}+$ subroutine. Get $Y_{1}, Y_{2}, \ldots, Y_{b}$
2. Return median $\left(Y_{1}, Y_{2}, \ldots, Y_{b}\right)$

Key Idea: If $>1 / 2$ of the Y_{j}^{\prime} 's are within $t(1 \pm 4 \epsilon)$, then its median are also within $t(1 \pm 4 \epsilon)$
Using Chernoff Bound, and $b=36 \ln (2 / \delta)$, we can get the desired result.

Connectivity

Maintain spanning forest of the graph

```
F: forest, initially empty
for each edge e in stream:
    if F U e has no cycles then <- Union Find
            add e to F
n = # of components in F
return n
```

Space: $O(n \log n) \leftarrow$ there are at most $n-1$ edges denoted by the 2 endpoints, each taking $O(\log n)$ bits to store.

Update cost: $O(\alpha(n, n))$

Is the graph bipartite?

Bipartite $=2$ way coloring / no odd cycle
Maintain spanning forest of the graph

```
F: forest, initially empty
for each edge e in stream:
    if F U e has no cycles then <- Union Find
        add e to F
    if F U e has odd-length cycles then <- maintain 2-coloring
        return NO
return YES
```

Space: $O(n \log n)$
Update cost: $O(\alpha(n, n))$

Approximating shortest paths

Idea: Find a "good" subgraph $H \subseteq G$ (called spanner) s.t.

1. H is sparse
2. $\forall(u, v) \in V^{2}, d_{G}(u, v) \leq d_{H}(u, v) \leq \alpha d_{G}(u, v)$ where $\alpha=\max \left\{\left.\frac{d_{H}(u, v)}{d_{G}(u, v)} \right\rvert\,(u, v) \in E\right\}$
```
H: subgraph, initially empty
for each edge e = (u,v) in stream:
    if d_H(u,v) >= 2k:
        add e to H
```

 return H
 Claim: $\alpha<2 k$.
Claim: H has no cycle with size $\leq 2 k$
Define girth as the size of the smallest cycle
Theorem: If graph G has girth $>2 k$, then it has $O\left(n^{1+1 / k}\right)$ edges.
Proof Sketch: Suppose $|H| \geq 10 n^{1+1 / k}$. Kill all nodes with degree $\leq 2 n^{1 / k}$. Using the fact that all cycles are of size $\geq 2 k+1$, obtain a contradiction on the number of node n.

So, to obtain a 3-spanner, we need $O\left(n^{3 / 2} \log n\right)$ space and to obtain a $\log n$-spanner, we can do it in $O(n \log n)$ space.

(Weighted) Matching

```
M: matching, initially empty
for each edge e = (u,v) in stream:
    let C be edges adjacent to nodes }u\mathrm{ and v in M
    if w(e) > (1 + \gamma) w(C):
```

Define:

1. edge e is born when added to M
2. edge e is killed by e^{\prime} if e is removed when e^{\prime} is born
3. edge e is a survivor if it is born and never killed.

For $e \in M$, define tree of the dead $T(e)=T_{1}(e) \cup T_{2}(e) \cup \ldots$ where $T_{0}(e)=\{e\}$ and $T_{j+1}(e)$ is the set of edges killed by $T_{j}(e)$. Note we have $(1+\gamma) W\left(T_{j+1}(e)\right)<W\left(T_{j}(e)\right)$. We can then prove $\gamma W(T(e))<W(e)$

Charging argument:

Let e be some edge in M^{*} (optimal maximum matching).

- If $e \in M$ or $e \in T(M)$, we charge $w(e)$ to e.
- Otherwise e is never born. So, for edge e^{\prime} adjacent to e, we split $w(e)$ proportionally s.t. charge to e^{\prime} is $<(1+\gamma) W\left(e^{\prime}\right)$ (Note that $e^{\prime} \in M$ or $e^{\prime} \in T(M)$)

Total charges $=W\left(M^{*}\right)$
Now, for all $e \in M$ or $e \in T(M)$, they are either:

1. charged once for being a survivor / being killed once
2. charged at most twice by unborn edges $e_{1}, e_{2} \in M^{*}$

Since each charge (to an edge e) is $<(1+\gamma) W(e)$, we have
$W\left(M^{*}\right)<2(1+\gamma)(W(M)+W(T(M)) \leq 8 W(M)$. So we have an 8-approximation.

k-median clustering

Problem: find k centres that minimize the average distance to a center.
Given points $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$, find points $C=\left\{c_{1}, c_{2}, \ldots, c_{k}\right\} \subset P$ that minimize
$D(P, C)=\sum_{i=1}^{n} \min _{c_{j} \in C}\left|p_{i}-c_{j}\right|$

LP Approximation Algorithm

Goal: find $2 k$ centers that give a 4-approximation of the optimal clustering. This is called a (2, 4)-approximation.

Integer LP (NP-hard)

$$
\begin{aligned}
\min \sum_{i, j} x_{i, j} d\left(p_{i}, p_{j}\right) & \\
\sum_{j} x_{i, j}=1 & \forall i \\
\sum_{j} y_{j} \leq k & \\
x_{i, j} \leq y_{j} & \forall i, j \\
x_{i, j}, y_{j} \in\{0,1\} & \forall i, j
\end{aligned}
$$

Intuition:

- $x_{i, j}$ denotes if p_{i} is assigned to centre p_{j}
- y_{j} denotes if p_{j} is a chosen centre

We can relax by replacing the integral constraints with continuous constraints $0 \leq x_{i, j}, y_{j} \leq 1$. We now have LP which is easily solvable.

Note that the solution to the LP C is at least as optimal as the ILP's C^{*}, i.e. $D(C, P) \leq D\left(C^{*}, P\right)$, but might not be valid as it can be fractional. So, how to round?

Define the cost of p_{i} as $C_{i}=\sum_{j} x_{i, j} d\left(p_{i}, p_{j}\right)$. Our goal after rounding is to construct C^{\prime} s.t. $C_{j}^{\prime} \leq 4 C_{j}$

1. Sort the points by cost
2. Add p_{j} with the smallest cost C_{j} to our set of centres S. (why? because smaller cost is more sensitive to bad roundups)
3. Delete all points in $V(j)=\left\{p_{i} \mid \exists q \in P, d\left(p_{i}, q\right) \leq 2 C_{i}, d\left(q, p_{j}\right) \leq 2 C_{j}\right\}$
4. Repeat steps 2 and 3 until all points are deleted. Return S

Claim: For all $j, C_{j}^{\prime} \leq 4 C_{j}$
Claim: $|S| \leq 2 k$
Note: $V(j)$ is not disjoint, so for to prove the following lemma, we define $V^{\prime}(i)=V(i) \cap\left\{p_{j} \mid d\left(p_{i}, p_{j}\right) \leq 2 C_{i}\right\}$. We can show that $V^{\prime}(j)$ is disjoint.

Lemma: Let $p_{i} \in S$, then $\sum_{j: d\left(p_{i}, p_{j}\right) \leq 2 C_{i}} y_{j} \geq 1 / 2$
The lemma implies there are at most $|S| \leq 2 k$ as $\sum_{j} y_{j} \leq k$.
Observation 1: $\sum_{j: d\left(p_{i}, p_{j}\right) \leq 2 C_{i}} y_{j} \geq \sum_{j: d\left(p_{i}, p_{j}\right) \leq 2 C_{i}} x_{i, j}$
Observation 2: $C_{i}=\sum_{j} x_{i, j} d\left(p_{i}, p_{j}\right)$ is the avg distance from a point p_{i} to a center.
Let Z be an RV that equals $d\left(p_{i}, p_{j}\right)$ with probability $x_{i, j}$. Note that $E[Z]=C_{i}$. By Markov, we have $P\left(Z \geq 2 C_{i}\right) \leq 1 / 2$. Thus, we have $\sum_{j: d\left(p_{i}, p_{j}\right) \leq 2 C_{i}} x_{i, j}=P\left(Z \leq 2 C_{i}\right) \geq 1 / 2$

Streaming k-Median

$O(\sqrt{n k})$ memory for a (2, O(1))-approximation
Points arrive in stream, and we'd like to output k cluster centers at the end.

Core-Set Algorithm

```
C = {}
Repeat sqrt(n / k) times:
    Let P = next sqrt(nk) points and find its (2,4)-approximate clustering.
    Add the 2k new cluster centers to C.
    Each center is weighted according to the number of points attached to it.
Return (2,4)-approximate weighted clustering on C
```

Define substream S_{i} as the i-th segment of stream S. Let T_{i} be the $2 k$ centers output by ApproxCluster on S_{i}. Let S_{w} be the weighted points used for the final Approxcluster, and T be its final output.

Useful fact: $\min _{T^{\prime} \subseteq S^{\prime}} d\left(S^{\prime}, T^{\prime}\right) \leq 2 \min _{T^{\prime} \subseteq A} d\left(S^{\prime}, T^{\prime}\right)$ for arbitrary A s.t. $S^{\prime} \subseteq A$. In other words, to cluster S^{\prime}, we can focus on points in S^{\prime} and only lose a factor of 2 compared to the global optimum.

Let C^{*} be the optimal clustering, we have

1. $d(S, T) \leq \sum_{i=1}^{t} d\left(S_{i}, T_{i}\right)+d\left(S_{w}, T\right)$: Triangle Ineq
2. $\sum_{i=1}^{t} d\left(S_{i}, T_{i}\right) \leq 8 d\left(S, C^{*}\right)$ and $d\left(S_{w}, T\right) \leq 8 d\left(S_{w}, C^{*}\right)$: Useful fact $+(2,4)$ - Approxcluster
3. $d\left(S_{w}, C^{*}\right) \leq \sum_{i=1}^{t} d\left(S_{i}, T_{i}\right)+d\left(S, C^{*}\right)$

Hence, we conclude that $d(S, T) \leq 80 d\left(S, C^{*}\right)$

Hierarchical Construction

We can extend this core-set algorithm to more depth. E.g. instead of processing every $\sqrt{n k}$ points, we process every n^{ϵ} points \rightarrow we get $1 / \epsilon$ height. We can store at most m sets of centres for each level of the tree, ending up with $O\left(2 k n^{\epsilon} / \epsilon\right)$ space and approximation factor ($8^{1 / \epsilon}$)

k-center

Problem: find k centres that minimize the maximum distance to a center.
2-Approximation algorithm

```
T}={x}\mathrm{ for any }x\mathrm{ in P
Repeat until |T| = k:
    T += { the point in P that maximizes d(z, T) }
Return T
```


Cache-Efficient Search Structures (7, 9, 10)

External Memory Model

A single ideal cache of size M with block size B fronting disk with infinite capacity.
Cost: Number of lines read from or written to memory.
Tall Cache assumption, i.e. $M=\Omega\left(B^{1+\epsilon}\right)$, is sometimes used.

Basic Results

- Scans: LinkedList: $O(N)$, Array: $O(\lceil N / B\rceil)$
- Search: LinkedList: $O(N)$, Red-Black Tree: $O(\lg n)$, Array binary search: $O(\log N / B)$, BTree: $O\left(\log _{B} N\right)$
- Sort:
- External Sort (M/B-way merge sort $\left.{ }^{[1]}\right): O\left(\frac{N}{B} \log _{M / B} \frac{N}{B}\right)$
- Funnel Sort (cache-oblivious, similar to van Emde Boas layout) ${ }^{[2]}: N^{1 / 3}$-way merge sort using K-funnel which merges K sorted list of total size $\Theta\left(K^{3}\right)$ in $O\left(\frac{K^{3}}{B} \log _{M / B} \frac{K}{B}+K\right)$
- Graphs $G(V, E)$: Priority Queue: $O\left(\frac{1}{B} \log _{M / B} \frac{V}{B}\right)$, Unweighted shortest paths: $O\left(V+\frac{E}{B} \log _{M / B} \frac{E}{B}\right)$, Dijkstra's: $O\left(V+\frac{E}{B} \log \frac{E}{M}\right)$, Unweighted APSP: $O\left(\frac{V E}{B} \log _{M / B} \frac{E}{B}\right)$

B-tree

(a, b)-trees with $a \geq 2, b \geq 2 a$ and take $a, b \sim O(B)$

- We can do a lazy split / optimistic splitting.
- Insert: insert to leaf, do split if an internal node is $\geq b$
- Delete: delete from leaf, "borrow" elements if total elements in siblings are $\geq b$, otherwise do a merge with sibling.
- Insert / Delete is $O\left(1 / B \log _{B} N\right)$ amortized cost with $a=B, b=5 B$
- Search is $O\left(\log _{B} N\right)$
- If we store a parent pointer for each node, the cost would be $O\left(\log _{B} N\right)$ amortized as we need to update $\Theta(B)$ pointers for node in each level.

Buffer Tree

Define: Leaf parameter as the max number of keys in the leaf, and branching parameter as the max number of keys in internal nodes. leaf parameter might be different from branching parameter.

Write-optimized data structure: use delayed queries and batched updates.
Idea: B-tree with branching parameter $5 M / B$ and leaf parameter $5 B$ and add a buffer of size M to each internal node to temporarily store queries.

- Insert/Delete: Add op to root buffer (if it is not cancelling a previous op), and buffer flush if size of buffer $\geq B$
- flush to an internal node: sort the buffer, move every op to its proper child, clean child buffer (e.g. removing duplicates), recursively flush child buffer if necessary
- flush to a leaf node: sort the buffer, perform delete ops, then insert ops, do splits as needed (whenever we do a split, its buffer is empty), do merges.
- Flush cost is cost of load + distribution: $O(M / B)$ amortized
- height is $O\left(\log _{M / B} \frac{N}{B}\right)$
- Insert / Delete costs: $O\left(\frac{\text { flush cost }}{M} \log _{M / B} \frac{N}{B}\right)$ amortized.

Note: If we use a (2,4)-tree as underlying DS, we obtain flush cost: $O(1 / B)$ amortized. If we use a $(\sqrt{B}, 2 \sqrt{B})$-tree as underlying DS, we obtain flush cost: $O(\sqrt{B} / B)$ amortized.

Van Emde Boas Layout

This is under Cache-Oblivious Model, which is similar to the External Memory Model except that the algorithm do not know about the value of B nor M.

1. Start with a (perfectly) balanced binary search tree
2. Divide it in half, from top to bottom
3. Recursively layout each of the $\sqrt{n}+1$ subtrees, starting from the root, then followed by the \sqrt{n} children in order.

Analysis:

1. Look at a level of detail where each subtree has the largest size $<B$
2. Notice that each subtree is stored in at most 2 memory blocks and each subtree has height $\in[1 / 2 \log B, \log B)$
3. Hence search is at most $2 \times \log N /(1 / 2 \log B)=O\left(\log _{B} N\right)$

Cache-Efficient BFS

Setup: undirected graph $G(V, E)$, each adjacency list stored as an array

1. Set L_{i+1} as the neighbors of all nodes in L_{i}
2. Sort L_{i+1} and remove duplicates
3. Remove item in L_{i+1} that exist in L_{i} or L_{i-1}

Complexity: $O\left(V+\frac{E}{B} \log _{M / B} \frac{E}{B}\right)$
Unlikely to improve in dense graph where $|E|>B|V|$ and if adjacency lists are stored separately.

Cache-Efficient Connected Components

Setup: Graph G consist of an array which stores all edges once.

1. Divide E into two parts: E_{1} and E_{2}
2. Recursively transform $E_{2} \rightarrow$ depth-1 trees
3. Contract E_{1} : move all edges to E_{2} to the root node of E_{2}
4. Recursively transform $E_{1} \rightarrow$ depth-1 trees
5. Merge E_{2} into E_{1}.
```
// (a,b) is a directed edge a -> b
contract:
    for each (x,y) in E1:
            if (a,x) is in E2: replace (x,y) with (a,y)
            if (a,y) is in E2: replace (x,y) with (a,x)
merge:
    for each (a,b) in E2:
            if (x,a) in E1: add (x,b) to E1
            else: add (a,b) to E1
```

Both contract and merge do not change the number of connected components.
To make contract and merge cache-efficient, we first sort E_{1}, E_{2} either by first / second component such that we could do a linear scan to decide whether to replace or not. This incurs $O(\operatorname{sort}(E)+E / B)=O\left(\frac{E}{B} \log _{M / B} \frac{E}{B}\right)$

So the algorithm satisfies $T(E)=2 T(E / 2)+O(\operatorname{sort}(E)) \rightarrow O(\operatorname{sort}(E) \log E)$

Cache-Efficient Minimum Spanning Tree

Similar to CC (above)

1. Divide E into two parts: small E_{1} and big E_{2} based on median weight w
2. Recursively find MST T_{1} of E_{1} as every edge in T_{1} is in the MST of G.
3. Contract E_{1} :
4. Make a copy of T_{1}
5. transform $T_{1} \rightarrow$ depth-1 trees,
6. If 2 nodes in E_{2} are in the same connected, replace the edge in a similar manner to CC's contract but swap E_{1} and E_{2}.
7. Tag every edge that is replaced with info about its "ORIGIN"
8. Recursively find MST T_{2} of E_{2}
9. Expand E_{2} : revert all replaced edge with its "ORIGIN".
10. Return $T_{1} \cup T_{2}$

Time: $O\left(\operatorname{sort}(E) \log ^{2} \frac{E}{M}\right)$

Parallel Algorithms $(11,13)$

Fork-Join Model and Bounds

PRAM Model

Assume that each processor is connected to some memory modules. Algorithms are designed for a specific number of processor.

Fork-Join Model

We rely an (almost) optimal scheduler that can assign work to p processors evenly.
Some example of such scheduler:

1. Greedy Scheduler: centralized, tries to execute as many tasks as possible at any time.
2. Work-Stealing Scheduler: each process keeps a queue of tasks to work on, if queue is empty, try to steal from another process's queue at random.

Metric: Work \& Span
Let T_{j} be the amount of (wall-clock) time algo takes on j processor
Brent's Theorem. $\frac{T_{1}}{p} \leq T_{p} \leq \frac{T_{1}}{p}+T_{\infty}$
Proof:

- Model work as DAG where each node is a unit of computation and draw a directed arc $u \rightarrow$ v if computation u is required as an input of v.
- Operations in different layers of a DAG cannot be computed in parallel.
- Total work : T_{1}. Span is T_{∞}. Parallelism: T_{1} / T_{∞}

Example:

- Sequential sum: $\left(\left(\left(a_{1}+a_{2}\right)+a_{3}\right)+a_{4}+\ldots \rightarrow O(n)\right.$
- Parallel sum: $\left(\left(\left(a_{1}+a_{2}\right)+\left(a_{3}+a_{4}\right)\right)+\ldots \rightarrow O\left(\frac{n}{p}+\log n\right)\right.$

Parallel Sort

```
pMergeSort(A)
    if (n = 1) return
    x = fork pMergesort(A[1..n/2])
    y = fork pMergesort(A[n/2+1, n])
    sync;
    pMerge(X,Y);
pMerge(A[1..k], B[1..n-k], C[1..n]) // assume k > n/2
    // handle base case
    binary search for j s.t. B[j] <= A[k/2] <= B[j+1]
    fork pMerge(A[1..k/2], B[1..j], C[1..k/2+j])
    fork pMerge(A[k/2+1..k], B[j+1..n-k], C[k/2+j+1..n]
    sync;
```

pMerge \rightarrow Work: $O(n)$, Span: $O\left(\log ^{2} n\right)$
pMergeSort \rightarrow Work: $O(n \log n)$, Span: $O\left(\log ^{3} n\right)$

Parallel Set

Support: insert, delete, divide(equal split), union, subtraction, set difference
Backing DS: $(2,4)$ tree that supports split(T, k) -> (T1, T2, k or null), join(T1, T2) where all elts in T1 < T2, $\operatorname{root}(T)$, insert (T, x)

Work: $O(\log n+\log m)$, Span: $O(\log n+\log m)$

union / subtraction / set difference

Algo :

- Split T2 based on root(T1)
- Recursively solve both left and right subtrees in parallel
- Join + add root(T1) if needed

Work: $O(n \log m)$, Span: $O\left(\log ^{2} n\right)$ where $\left|T_{1}\right|=n ;\left|T_{2}\right|=m ; n>m$.

Parallel BFS

```
parBFS(G, start):
    F = {start}, D = {}
    while F not empty:
        D = Union(D, F)
```

```
F = ProcessFrontier(F) // divide and conquer
F = SetSubtraction(F, D)
```

Work: $O\left(m \log ^{2} n\right)$, Span: $O\left(D \log ^{3} m\right)$ where $m=$ number of edges and n number of nodes.

Map-Reduce

Model: data in KV pairs, stored in distributed file system, relies on a scheduler to assign Map and Reduce processes to nodes.

Round:

1. Map: process each KV pair, stateless
2. Shuffle : Group items by key
3. Reduce: process items with same key together

Metric: Number of rounds
Bottleneck: communication cost / shuffling data around
Efficient Map-Reduce. Each map/reduce functions must satisfy:

- run in polynomial time.
- use sublinear memory in the size of the problem, e.g. $<O(\sqrt{n})$ memory
- process sublinear number of KV pairs and each pair should be O (polylogn)

Example:

1. Array, compute square of odd \& even-indexed elements

- Map: $(i, A[i]) \rightarrow\left(i \bmod 2, A[i]^{2}\right)$
- Reduce: return (key, sum of values)

2. Word Count:

- Map: (idx, word) \rightarrow (word, 1)
- Reduce: return (word, sum of values)
- Problem: reduce might take in too many values. Solution: since reduce function is associative, scheduler can call reduce function on fewer keys at a time.

3. Semijoin

- Input: $A=\left[\left(k_{A}, v_{A}\right), \ldots\right], B=\left[k_{B}, \ldots\right]$, select all v_{A} with $k_{A} \in B$.
- Map: $\left(A,\left(k_{A}, v_{A}\right)\right) \rightarrow\left(k_{A}, v_{A}\right),\left(B, k_{B}\right) \rightarrow\left(k_{B}\right.$, BVALUE $)$
- Reduce: return (key, value) if BVALUE amongst values except BVALUEs
- Problem: Reduce not associative. Solution: process values in a stream and make sure BVALUE appears first.

4. Sorting / Bucket Sorting

- Map: $(k, v) \rightarrow(j, v)$ where j is the bucket index. (for regular sorting, just use k instead)
- Reduce: return (key * number of buckets + idx in bucket, value)
- Reasonable if values are well distributed or number of buckets is large, say $>O(\sqrt{n})$

Bellman-Ford

- Input: (nodeID, (nodeID, est, nbrIDs, nbrWeights)). Note we could also store the graph as a list of edges instead.
- Map: (nodeID, info) \rightarrow return (nodeID, info) and (nbrID[i], info.estimate + nbrWeight[i])
- Reduce: (nodeID, info) + (nodeID, estimates) \rightarrow (nodeID, info) with the estimates updated.
- Reasonable if degree is not too large. Not associative. Process edges in streaming fashion.

Running time: N map-reduce rounds (without early termination) or $2 D$ map-reduce rounds (with early termination).

Page Rank

- Input: (nodeID, (nodeID, est, nbrIDs)). Each est is initialized to $1 / n$. est is the probability that a random walk will end up at the node after t steps.
- Map: (nodeID, info) \rightarrow return (nodeID, info) and (nbrID[i], info.estimate / nbrID.len)
- Reduce: (nodeID, info) + (nodeID, estimates) \rightarrow (nodeID, info) with the estimates updated.

Depends on the mixing time of the graph. For random graphs / cliques: $O(\log n)$. Worst case is $O\left(n^{3}\right)$

1. Berkeley CS186 Notes > External Sort \hookleftarrow
2. MIT 6.851, Funnelsort - Wikipedia
