
Basic Results

Union Bound. Let be a collection of events. Then .

Useful to bound the probability of at least 1 bad events happening.

Markov's Inequality. for and some

Well known. . The first inequality is correct for .

Hoeffding Bound. If are independent RV in the range , define ,

then

Note: make sure -s and satisfy the requirements before using this technique

Chernoff Bound. If are independent RV in the range for some constant ,

define and then for all ,

Chebyshev. Let be an RV. For any real number ,

Sublinear Sampling Algorithms (1 3
Approximate solutions:

 Relative error:
 Absolute error:
 Gap error:

If G is connected, return TRUE.
If G is -far from connected, return FALSE.
Otherwise, don't care

Key Idea:

find a local cost (or anything you can sample locally) to learn about large parts of the
graph.

All-Zeros?

AllZeros(A, 𝜀):

 Repeat s = 2/𝜀 times:

 Choose random i in [1, n]

 If A[i] == 1: return FALSE

 return TRUE

E1,E2, … ,En Pr(
n

⋃
i=1

Ei) ≤
n

∑
i=1

Pr(Ei)

P(|X| ≥ a) ≤
E[|X|n]

an
a > 0 n ∈ N

1
e2 ≤ (1 − 1

x
)
x

≤ 1
e

x > 2

Y1,Y2, … ,Ys [0, 1] Z =
s

∑
j=1

Yj

Pr[|Z − E[Z]| ≥ δ] ≤ 2e−2δ2/s

Yi Z

Y1,Y2, … ,Ys [0, a] s

Z =
s

∑
j=1

Yj μ = E[Z] 0 ≤ δ ≤ 1

Pr[Z ≥ (1 + δ)μ] ≤ e−μδ2/(3a)

Pr[Z ≤ (1 − δ)μ] ≤ e−μδ2/(2a)

X k > 0 Pr(|X − E[X]| ≥ k) ≤
V ar[X]

k2

MST (G)(1 − ϵ) ≤ ALG(G) ≤ MST (G)(1 + ϵ)

MST (G) − ϵ ≤ ALG(G) ≤ MST (G) + ϵ

ϵ

Using , we can prove Gap Error, i.e.

 If the array is all zeros, we always return TRUE
 If the array has ones, we will return FALSE w.p.

How many ones?

FractionOnes(A, 𝜀):

 sum = 0

 Repeat s = 1/𝜀^2 times:

 Choose random i in [1, n]

 sum = sum + A[i]

 return sum / s

Let be the fraction of ones in the array. Using Hoeffding Bound, we can prove that
 w.p. .

Is the graph connected?

Graph has nodes, edges. Each node has a maximum degree of . A good algorithm for
sparse undirected graphs runs in time to output Gap-Error w.p.

Connected(G, n, d, 𝜀)

 Repeat 16/𝜀d times:

 Choose random node u.

 Do a BFS from u, stopping after 8/𝜀d nodes are found.

 If CC of u has ≤ 8/𝜀d nodes: return FALSE.

 Return TRUE

Key Ideas:

 If G is -far, then there are connected components
 If G is -far, there are at CC with size . In simple words, there are many

small CC if G is -far)
 Stop early with the BFS. The BFS runs in

Insights:

Why is the definition of -close based on entries?

Intuition: we want to count how many edges do we need to add s.t. the graph is connected.
Observe that is the total degree of the graph (twice the edges) and so the maximum
number of edges we can add is . So, it is natural that we use as our definition

The running time is . It seems that if is larger, the running time will be
smaller?

(1 − 1
x

)
x

≤ 1
e

≥ ϵn ≥ 2/3

f

|sum/s − f| ≤ ϵ ≥ 2/3

G n m d

O(1/ϵ2d) > 2/3

ϵ ≥ ϵdn/4

ϵ ≥ ϵdn/8 ≤ 8/ϵd

ϵ

O(d × 8/ϵd) = O(1/ϵ)

ϵ ϵnd

nd

nd/2 ϵnd

O(1/(ϵ2d)) d

If is larger, say , then for the problem to be interesting, we should have (why?
See our definition of -far). This implies that our running time goes to as goes to
(not desirable).

Number of connected components

Running time : to output s.t. w.p.

sum = 0

for j = 1 to s = 4/𝜀^2:

 Choose u uniformly at random.

 Perform a BFS from u; stop after seeing 2/𝜀 nodes.

 if BFS found > 2/𝜀 nodes:

 sum = sum + 𝜀/2

 else if BFS found n(u) nodes:

 sum = sum + 1/n(u)

return n * (sum/s)

Key Ideas:

 For all nodes , define where is the number of nodes in the CC
containing node . → is the total number of CC in the graph

 Sampling: Use Hoeffding to get
 Approximating → by stopping early if CC is large.

Insights

Why is the definition of -close based on ?

Intuition: The maximum number of CC we can have is .

MST Weight

Problem setting: undirected connected weighted graph with nodes, edges, maximum
degree and max weight . Output s.t. in

sum = n - W

for j = 1 to W - 1:

 sum += ApproxCC(G_j, d, 𝜀', δ) where 𝜀' = 𝜀/W and δ = 1/(3W)

return sum

Key Ideas

 where is the number of connected components in , graph

containing edges with weight .
 to change additive approximation to multiplicative approximation.

d d → n ϵ < 1/n

ϵ O(n) d n

O(d(ln(1/δ))/ϵ3) C |CC(G) − C| ≤ ϵn ≥ 1 − δ

u cost(u) = 1/n(u) n(u)

u ∑ cost(u)

Pr (|sum − E[sum]| ≥ ϵs/2) ≤ 1/3

cost(u)

ϵ ϵn

n

n m

d W M M = MST (G)(1 ± ϵ) O((dW 4 logW)/ϵ3)

MST (G) = n − W +
W−1

∑
j=1

Cj Cj Gj

≤ j

MST (G) ≥ n − 1 > n/2

Maximal Matching

We know that maximal matching gives a 2-approximation of the maximum matching.

Algorithm (runs in time):

Choose a random permutation for the edges, e.g. assign a hash value to each edge

def query(e):

 for all neighbors e' of e:

 if hash(e') < hash(e) && query(e'):

 return FALSE

 return TRUE

sum = 0

for j = 1 to s:

 Choose an node u uniformly at random.

 if query(e) = True for all adjacent edge e of u:

 sum += 1

return (1/2) * n * (sum / s)

Query takes expected time:

The algorithm returns 0.5 because each edge in have 2 endpoints.

Yao's Min-Max Principle for Lower Bounds

The expected cost of a randomized algorithm on its worst-case input is no better than the
expected cost for a worst-case probability distribution as the inputs of the deterministic
algorithm that performs best against that distribution.

Recipe

 Choose a distribution
 Show that the expected cost of every deterministic algorithm on input from is slow
 Conclude that every randomized algorithm has at least one input with expected cost just

as slow.

Property Testing Version: replace expected cost with probability algorithm is wrong, i.e. if
there exists a distribution of inputs s.t. the probability of is wrong for every
deterministic algorithm with query complexity , then for every randomized algorithm of
query complexity , there exist an input s.t. the probability of is wrong .

Sketching and Sampling (4 6
The space in streaming algorithms counts the number of bits to store the entire DS. e.g.

 is stored in bits.

Item Frequencies / Heavy Hitters

O(ed/ϵ2)

∞

∑
i=1

2dk/k! = O(ed)

M

γ

γ

γ A(x) > 1/3

A q B

q x B(x) > 1/3

n ∈ N logn

Given a stream of items , find in small space:

 count(x) :
 heavy hitters: return

 every item that appears times.
 no item that appears times.

Misra-Gries Algorithm

Set P of <item, count> pairs

For each u in stream S

 if <u, c> in P: increment c

 else: add <u, 1> to set P

 if | P | > k, decrement c for each item in P

 remove all items from P with c = 0

Count(x) = c if <x, c> in P else 0

Space:
Correctness:

Taking and life is good.

Heavy hitters : return all item that appears times, but no item that appears times

Solution: return x if count(x)

Insight:

 Misra-Gries cannot differentiate elements that appear a small number of times, i.e. an
element that appear zero times / once looks the same to MG.

Counting distinct elements

Given a stream of items , find in small space:

 distinct(): approximation with probability at least

Flajolet-Martin (FM Algorithm

Let x = 1, and h(u) in [0, 1]

For each u in stream S:

 if h(u) < x: x = h(u)

Return -1 + 1/x

Tricks:

 Use a hash function: to randomize the items
 Use the minimum of a set of RV.

s1, s2, … sm

|N(x) − count(x)| ≤ ϵm

≥ 2ϵm

< ϵm

O(k logm)

N(x) ≥ count(x) ≥ N(x) − m/k

k = 1/ϵ

≥ 2ϵm < ϵm

≥ ϵm

s1, s2, … sm

ϵ (1 ± ϵ) (1 − δ)

We can prove that and using as a continuous RV.

If we apply Chebyshev directly, we get

However the right hand side is still too big (Note that).

To make it smaller, we can repeat FM times and take the average. (reducing variance by
)

FM Algorithm

 Run copies of FM-subroutine. get

 Compute average

 Return .

Using basic probability, we can prove that and

Now we have . Taking , the RHS

Using the fact that for , and , we have
w.p. .

To make the probability bigger, we can repeat FM times and take its median. (amplifying
probability)

FM Algorithm

 Run copies of FM subroutine. Get
 Return median()

Key Idea: If of the 's are within , then its median are also within

Using Chernoff Bound, and , we can get the desired result.

Connectivity

Maintain spanning forest of the graph

F: forest, initially empty

for each edge e in stream:

 if F U e has no cycles then <- Union Find

 add e to F

n = # of components in F

return n

Space: ← there are at most edges denoted by the 2 endpoints, each taking
 bits to store.

Update cost:

E[X] = 1
t+1 V ar(X) ≤ 1

(t+1)2 X

Pr [X − 1
t+1

≥ ϵ (1
t+1

)] ≤ V ar(X) (t+1)2

ϵ2 ≤ 1
e2∣ ∣ 1

e2 > 1

a

1/a

a X1,X2, … ,Xa

Z = 1
a

a

∑
j=1

Xj

−1 + 1/Z

E[Z] = 1
t+1

V ar(Z) ≤ 1
a(t+1)2

Pr [Z − 1
t+1 ≥ ϵ (1

t+1)] ≤ 1
ae2∣ ∣ a = 4

e2 ≤ 1/4

0 < x < 1/2 1
1−x

≤ 1 + 2x 1
1+x

≥ 1 − x −1 + 1/Z ∈ t(1 ± 4ϵ)

≥ 3/4

b

b Y1,Y2, … ,Yb

Y1,Y2, … ,Yb

> 1/2 Yj t(1 ± 4ϵ) t(1 ± 4ϵ)

b = 36 ln(2/δ)

O(n logn) n − 1

O(logn)

O(α(n,n))

Is the graph bipartite?

Bipartite = 2 way coloring / no odd cycle

Maintain spanning forest of the graph

F: forest, initially empty

for each edge e in stream:

 if F U e has no cycles then <- Union Find

 add e to F

 if F U e has odd-length cycles then <- maintain 2-coloring

 return NO

return YES

Space:
Update cost:

Approximating shortest paths

Idea: Find a "good" subgraph (called spanner) s.t.

 is sparse
 , where

H: subgraph, initially empty

for each edge e = (u,v) in stream:

 if d_H(u,v) >= 2k:

 add e to H

return H

Claim: .
Claim: has no cycle with size

Define girth as the size of the smallest cycle
Theorem If graph has girth , then it has edges.
Proof Sketch: Suppose . Kill all nodes with degree . Using the fact that
all cycles are of size , obtain a contradiction on the number of node .

So, to obtain a 3-spanner, we need space and to obtain a -spanner, we can
do it in space.

Weighted) Matching

M: matching, initially empty

for each edge e = (u,v) in stream:

 let C be edges adjacent to nodes u and v in M

 if w(e) > (1 + \gamma) w(C):

O(n logn)

O(α(n,n))

H ⊆ G

H

∀(u, v) ∈ V 2 dG(u, v) ≤ dH(u, v) ≤ αdG(u, v) α = max{ dH(u,v)

dG(u,v)
∣ (u, v) ∈ E}

α < 2k

H ≤ 2k

G > 2k O(n1+1/k)

|H| ≥ 10n1+1/k ≤ 2n1/k

≥ 2k + 1 n

O(n3/2 logn) logn

O(n logn)

 remove C from M

 add e to M.

Define:

 edge is born when added to
 edge is killed by if is removed when is born
 edge is a survivor if it is born and never killed.

For , define tree of the dead where and is
the set of edges killed by . Note we have . We can then
prove

Charging argument:
Let be some edge in (optimal maximum matching).

If or , we charge to .
Otherwise is never born. So, for edge adjacent to , we split proportionally s.t.
charge to is Note that or)

Total charges =
Now, for all or , they are either:

 charged once for being a survivor / being killed once
 charged at most twice by unborn edges

Since each charge (to an edge) is , we have
. So we have an 8-approximation.

k-median clustering

Problem: find centres that minimize the average distance to a center.

Given points , find points that minimize

LP Approximation Algorithm

Goal: find centers that give a 4-approximation of the optimal clustering. This is called a (2,
4)-approximation.

Integer LP NP-hard)

Intuition:

e M

e e′ e e′

e

e ∈ M T (e) = T1(e) ∪ T2(e) ∪ … T0(e) = {e} Tj+1(e)

Tj(e) (1 + γ)W(Tj+1(e)) < W(Tj(e))

γW(T (e)) < W(e)

e M ∗

e ∈ M e ∈ T (M) w(e) e

e e′ e w(e)

e′ < (1 + γ)W(e′) e′ ∈ M e′ ∈ T (M)

W(M ∗)

e ∈ M e ∈ T (M)

e1, e2 ∈ M ∗

e < (1 + γ)W(e)

W(M ∗) < 2(1 + γ)(W(M) + W(T (M)) ≤ 8W(M)

k

P = {p1, p2, … , pn} C = {c1, c2, … , ck} ⊂ P

D(P ,C) =
n

∑
i=1

min
cj∈C

|pi − cj|

2k

min ∑
i,j

xi,jd(pi, pj)

∑
j
xi,j = 1 ∀i

∑
j
yj ≤ k

xi,j ≤ yj ∀i, j

xi,j, yj ∈ {0, 1} ∀i, j

 denotes if is assigned to centre
 denotes if is a chosen centre

We can relax by replacing the integral constraints with continuous constraints .
We now have LP which is easily solvable.

Note that the solution to the LP is at least as optimal as the ILP's , i.e.
, but might not be valid as it can be fractional. So, how to round?

Define the cost of as . Our goal after rounding is to construct s.t.

 Sort the points by cost
 Add with the smallest cost to our set of centres . (why? because smaller cost is

more sensitive to bad roundups)
 Delete all points in
 Repeat steps 2 and 3 until all points are deleted. Return

Claim For all ,
Claim:

Note: is not disjoint, so for to prove the following lemma, we define
. We can show that is disjoint.

Lemma Let , then

The lemma implies there are at most as .

Observation 1

Observation 2 is the avg distance from a point to a center.

Let be an RV that equals with probability . Note that . By Markov, we
have . Thus, we have

Streaming k-Median

 memory for a (2, O1))-approximation

Points arrive in stream, and we'd like to output cluster centers at the end.

Core-Set Algorithm

C = {}

Repeat sqrt(n / k) times:

 Let P = next sqrt(nk) points and find its (2,4)-approximate clustering.

 Add the 2k new cluster centers to C.

 Each center is weighted according to the number of points attached to it.

Return (2,4)-approximate weighted clustering on C

xi,j pi pj

yj pj

0 ≤ xi,j, yj ≤ 1

C C ∗ D(C,P) ≤ D(C ∗,P)

pi Ci = ∑
j

xi,jd(pi, pj) C ′

C ′
j ≤ 4Cj

pj Cj S

V (j) = {pi ∣ ∃q ∈ P , d(pi, q) ≤ 2Ci, d(q, pj) ≤ 2Cj}

S

j C ′
j ≤ 4Cj

|S| ≤ 2k

V (j)

V ′(i) = V (i) ∩ {pj ∣ d(pi, pj) ≤ 2Ci} V ′(j)

pi ∈ S ∑
j : d(pi,pj)≤2Ci

yj ≥ 1/2

|S| ≤ 2k ∑
j

yj ≤ k

∑
j : d(pi,pj)≤2Ci

yj ≥ ∑
j : d(pi,pj)≤2Ci

xi,j

Ci = ∑
j

xi,jd(pi, pj) pi

Z d(pi, pj) xi,j E[Z] = Ci

P(Z ≥ 2Ci) ≤ 1/2 ∑
j : d(pi,pj)≤2Ci

xi,j = P(Z ≤ 2Ci) ≥ 1/2

O(√nk)

k

Define substream as the i-th segment of stream . Let be the centers output by
ApproxCluster on . Let be the weighted points used for the final ApproxCluster , and
 be its final output.

Useful fact: for arbitrary s.t. . In other words, to cluster

, we can focus on points in and only lose a factor of 2 compared to the global optimum.

Let be the optimal clustering, we have

 Triangle Ineq

 and Useful fact + (2,4 ApproxCluster

Hence, we conclude that

Hierarchical Construction

We can extend this core-set algorithm to more depth. E.g. instead of processing every
points, we process every points → we get height. We can store at most sets of
centres for each level of the tree, ending up with space and approximation factor

k-center

Problem: find centres that minimize the maximum distance to a center.

2Approximation algorithm

T = {x} for any x in P

Repeat until |T| = k:

 T += { the point in P that maximizes d(z, T) }

Return T

Cache-Efficient Search Structures (7, 9, 10
External Memory Model

A single ideal cache of size with block size fronting disk with infinite capacity.

Cost Number of lines read from or written to memory.

Tall Cache assumption, i.e. , is sometimes used.

Basic Results

Scans: LinkedList: , Array:
Search: LinkedList: , Red-Black Tree: , Array binary search: , B
Tree:

Si S Ti 2k

Si Sw

T

min
T ′⊆S ′

d(S ′,T ′) ≤ 2 min
T ′⊆A

d(S ′,T ′) A S ′ ⊆ A

S ′ S ′

C ∗

d(S,T) ≤
t

∑
i=1

d(Si,Ti) + d(Sw,T)

t

∑
i=1

d(Si,Ti) ≤ 8d(S,C ∗) d(Sw,T) ≤ 8d(Sw,C ∗)

d(Sw,C ∗) ≤
t

∑
i=1

d(Si,Ti) + d(S,C ∗)

d(S,T) ≤ 80d(S,C ∗)

√nk

nϵ 1/ϵ m

O(2knϵ/ϵ)

(81/ϵ)

k

M B

M = Ω(B1+ϵ)

O(N) O(⌈N/B⌉)

O(N) O(lgn) O(logN/B)

O(logBN)

Sort:
External Sort (-way merge sort1) :
Funnel Sort (cache-oblivious, similar to van Emde Boas layout) 2 : -way merge
sort using -funnel which merges sorted list of total size in

Graphs Priority Queue: , Unweighted shortest paths:
, Dijkstra's: , Unweighted APSP

B-tree

(a, b)-trees with and take

We can do a lazy split / optimistic splitting.
Insert: insert to leaf, do split if an internal node is
Delete: delete from leaf, "borrow" elements if total elements in siblings are , otherwise
do a merge with sibling.
Insert / Delete is amortized cost with
Search is
If we store a parent pointer for each node, the cost would be amortized as we
need to update pointers for node in each level.

Buffer Tree

Define: Leaf parameter as the max number of keys in the leaf, and branching parameter as
the max number of keys in internal nodes. leaf parameter might be different from branching
parameter.

Write-optimized data structure: use delayed queries and batched updates.

Idea B-tree with branching parameter and leaf parameter and add a buffer of size
 to each internal node to temporarily store queries.

Insert/Delete: Add op to root buffer (if it is not cancelling a previous op), and buffer
flush if size of buffer
flush to an internal node: sort the buffer, move every op to its proper child, clean child
buffer (e.g. removing duplicates), recursively flush child buffer if necessary
flush to a leaf node: sort the buffer, perform delete ops, then insert ops, do splits as
needed (whenever we do a split, its buffer is empty), do merges.
Flush cost is cost of load + distribution: amortized
height is
Insert / Delete costs: amortized.

Note: If we use a (2,4)-tree as underlying DS, we obtain flush cost: amortized. If we
use a -tree as underlying DS, we obtain flush cost: amortized.

Van Emde Boas Layout

This is under Cache-Oblivious Model, which is similar to the External Memory Model except
that the algorithm do not know about the value of nor .

M/B O(N
B

logM/B
N
B

)

N 1/3

K K Θ(K 3)

O(K 3

B
logM/B

K
B

+ K)

G(V ,E) O(1
B

logM/B
V
B

)

O(V + E
B

logM/B
E
B

) O(V + E
B

log E
M

) O(VE
B

logM/B
E
B

)

a ≥ 2, b ≥ 2a a, b ∼ O(B)

≥ b

≥ b

O(1/B logBN) a = B, b = 5B

O(logBN)

O(logBN)

Θ(B)

5M/B 5B

M

≥ B

O(M/B)

O(logM/B
N
B

)

O(flush cost
M

logM/B
N
B

)

O(1/B)

(√B, 2√B) O(√B/B)

B M

 Start with a (perfectly) balanced binary search tree
 Divide it in half, from top to bottom
 Recursively layout each of the subtrees, starting from the root, then followed by

the children in order.

Analysis:

 Look at a level of detail where each subtree has the largest size
 Notice that each subtree is stored in at most 2 memory blocks and each subtree has

height
 Hence search is at most

Cache-Efficient BFS

Setup: undirected graph , each adjacency list stored as an array

 Set as the neighbors of all nodes in
 Sort and remove duplicates
 Remove item in that exist in or

Complexity:

Unlikely to improve in dense graph where and if adjacency lists are stored
separately.

Cache-Efficient Connected Components

Setup: Graph G consist of an array which stores all edges once.

 Divide into two parts: and
 Recursively transform → depth-1 trees
 Contract : move all edges to to the root node of
 Recursively transform → depth-1 trees
 Merge into .

// (a,b) is a directed edge a -> b

contract:

 for each (x,y) in E1:

 if (a,x) is in E2: replace (x,y) with (a,y)

 if (a,y) is in E2: replace (x,y) with (a,x)

merge:

 for each (a,b) in E2:

 if (x,a) in E1: add (x,b) to E1

 else: add (a,b) to E1

Both contract and merge do not change the number of connected components.

To make contract and merge cache-efficient, we first sort either by first / second
component such that we could do a linear scan to decide whether to replace or not. This
incurs

√n + 1

√n

< B

∈ [1/2 logB, logB)

2 × logN/(1/2 logB) = O(logBN)

G(V ,E)

Li+1 Li

Li+1

Li+1 Li Li−1

O(V + E
B

logM/B
E
B

)

|E| > B|V |

E E1 E2

E2

E1 E2 E2

E1

E2 E1

E1,E2

O(sort(E) + E/B) = O(E
B

logM/B
E
B

)

So the algorithm satisfies →

Cache-Efficient Minimum Spanning Tree

Similar to CC (above)

 Divide into two parts: small and big based on median weight
 Recursively find MST of as every edge in is in the MST of .
 Contract :

 Make a copy of
 transform → depth-1 trees,
 If 2 nodes in are in the same connected, replace the edge in a similar manner to

CC's contract but swap and .
 Tag every edge that is replaced with info about its "ORIGIN"

 Recursively find MST of
 Expand : revert all replaced edge with its "ORIGIN".
 Return

Time:

Parallel Algorithms (11, 13

Fork-Join Model and Bounds

PRAM Model

Assume that each processor is connected to some memory modules. Algorithms are
designed for a specific number of processor.

Fork-Join Model

We rely an (almost) optimal scheduler that can assign work to processors evenly.

Some example of such scheduler:

 Greedy Scheduler: centralized, tries to execute as many tasks as possible at any time.
 Work-Stealing Scheduler: each process keeps a queue of tasks to work on, if queue is

empty, try to steal from another process's queue at random.

Metric: Work & Span

Let be the amount of (wall-clock) time algo takes on processor

Brent's Theorem.

Proof:

Model work as DAG where each node is a unit of computation and draw a directed arc →
 if computation is required as an input of .

Operations in different layers of a DAG cannot be computed in parallel.
Total work : . Span is . Parallelism:

T (E) = 2T (E/2) + O(sort(E)) O(sort(E) logE)

E E1 E2 w

T1 E1 T1 G

E1

T1

T1

E2

E1 E2

T2 E2

E2

T1 ∪ T2

O(sort(E) log2 E
M

)

p

Tj j

T1

p
≤ Tp ≤ T1

p
+ T∞

u

v u v

T1 T∞ T1/T∞

Example:

Sequential sum: →
Parallel sum: →

Parallel Sort

pMergeSort(A)

 if (n = 1) return

 x = fork pMergesort(A[1..n/2])

 y = fork pMergesort(A[n/2+1, n])

 sync;

 pMerge(X,Y);

pMerge(A[1..k], B[1..n-k], C[1..n]) // assume k > n/2

 // handle base case

 binary search for j s.t. B[j] <= A[k/2] <= B[j+1]

 fork pMerge(A[1..k/2], B[1..j], C[1..k/2+j])

 fork pMerge(A[k/2+1..k], B[j+1..n-k], C[k/2+j+1..n]

 sync;

pMerge → Work: , Span:
pMergeSort → Work : , Span:

Parallel Set

Support: insert, delete, divide(equal split), union, subtraction, set difference

Backing DS 2,4 tree that supports split(T,k) -> (T1, T2, k or null) , join(T1, T2)
where all elts in T1 T2, root(T) , insert(T,x)

Work: , Span:

union / subtraction / set difference

Algo :

Split T2 based on root(T1
Recursively solve both left and right subtrees in parallel
Join + add root(T1 if needed

Work: , Span: where .

Parallel BFS

parBFS(G, start):

 F = {start}, D = {}

 while F not empty:

 D = Union(D, F)

(((a1 + a2) + a3) + a4 + … O(n)

(((a1 + a2) + (a3 + a4)) + … O(n
p

+ logn)

O(n) O(log2
n)

O(n logn) O(log3
n)

O(logn + logm) O(logn + logm)

O(n logm) O(log2
n) |T1| = n; |T2| = m;n > m

 F = ProcessFrontier(F) // divide and conquer

 F = SetSubtraction(F, D)

Work: , Span: where = number of edges and number of nodes.

Map-Reduce

Model: data in KV pairs, stored in distributed file system, relies on a scheduler to assign Map
and Reduce processes to nodes.

Round:

 Map: process each KV pair, stateless
 Shuffle : Group items by key
 Reduce : process items with same key together

Metric: Number of rounds

Bottleneck: communication cost / shuffling data around

Efficient Map-Reduce. Each map/reduce functions must satisfy:

run in polynomial time.
use sublinear memory in the size of the problem, e.g. memory
process sublinear number of KV pairs and each pair should be

Example:

 Array, compute square of odd & even-indexed elements
Map:)
Reduce: return (key, sum of values)

 Word Count:
Map: (idx, word) → (word, 1
Reduce: return (word, sum of values)
Problem: reduce might take in too many values. Solution: since reduce function is
associative, scheduler can call reduce function on fewer keys at a time.

 Semijoin
Input: , select all with .
Map: ,
Reduce: return (key, value) if BVALUE amongst values except BVALUEs
Problem: Reduce not associative. Solution: process values in a stream and make sure
BVALUE appears first.

 Sorting / Bucket Sorting
Map: where is the bucket index. (for regular sorting, just use instead)
Reduce: return (key * number of buckets + idx in bucket, value)
Reasonable if values are well distributed or number of buckets is large, say

Bellman-Ford

Parallelize each round of relaxation

O(m log2 n) O(D log3 m) m n

< O(√n)

O(polylogn)

(i,A[i]) → (i mod 2,A[i]2

A = [(kA, vA), …],B = [kB, …] vA kA ∈ B

(A, (kA, vA)) → (kA, vA) (B, kB) → (kB, BVALUE)

(k, v) → (j, v) j k

> O(√n)

Input: (nodeID, (nodeID, est, nbrIDs, nbrWeights)). Note we could also store the graph as a
list of edges instead.
Map: (nodeID, info) → return (nodeID, info) and (nbrID[i], info.estimate + nbrWeight[i])
Reduce: (nodeID, info) + (nodeID, estimates) → (nodeID, info) with the estimates updated.
Reasonable if degree is not too large. Not associative. Process edges in streaming
fashion.

Running time: map-reduce rounds (without early termination) or map-reduce rounds
(with early termination).

Page Rank

Input: (nodeID, (nodeID, est, nbrIDs)). Each est is initialized to . est is the probability
that a random walk will end up at the node after steps.
Map: (nodeID, info) → return (nodeID, info) and (nbrID[i], info.estimate / nbrID.len)
Reduce: (nodeID, info) + (nodeID, estimates) → (nodeID, info) with the estimates updated.

Depends on the mixing time of the graph. For random graphs / cliques: . Worst case
is

 Berkeley CS186 Notes > External Sort↩
 MIT 6.851, Funnelsort - Wikipedia↩

N 2D

1/n

t

O(logn)

O(n3)

https://youtu.be/Fs4-E4Nj1Ks?t=130
https://en.wikipedia.org/wiki/Funnelsort

