General Vector Spaces

8.1 Fields

Def 8.1.2 A field consists of

- 1. a nonempty set $\mathbb F$
- 2. an operation of addition a+b for all $a,b\in\mathbb{F}$
- 3. an operation of *multiplication* ab for all $a,b\in\mathbb{F}$

Axioms:

- 1. Closure under addition
- 2. Commutative Law for addition
- 3. Associative Law for addition
- 4. Existence of the Additive Identity 0
- 5. Existence of Additive Inverse
- 6. Closure under multiplication
- 7. Commutative Law for multiplication
- 8. Associative Law for multiplication
- 9. Existence of Multiplicative Identity 1
- 10. Existence of Multiplicative Inverse a^{-1}
- 11. Distributive Law

Prop 8.1.5 Additional properties of field

- 1. Uniqueness of Additive Identity
- 2. Uniqueness of Additive Inverse
- 3. Uniqueness of Multiplicative Identity
- 4. Uniqueness of Multiplicative Inverse
- 5. For any $a\in\mathbb{F}$, a0=0 and (-1)a=-a
- 6. For any $a, b \in \mathbb{F}$, if ab = 0, then a = 0 or b = 0.

Prop 8.1.11 Define the trace of A, denoted tr(A), as the sum of the entries on the diagonal of A.

- 1. If A and B are n imes n matrix over $\mathbb F$, then tr(A+B) = tr(A) + tr(B)
- 2. If $c \in F$ and A is an n imes n matrix over $\mathbb F$, then $tr(cA) = c \cdot tr(A)$
- 3. If C and D are $m \times n$ and $n \times m$ matrices, respectively over $\mathbb F$, then tr(CD) = tr(DC)

8.2 Vector Spaces

Def 8.2.2. A vector space consists of

1. a field $\mathbb F,$ where the elements are called scalars

- 2. a nonempty set V, where the elements are called vectors
- 3. an operation of vector addition u + v for all $u, v \in V$
- 4. an operation of *scalar multiplication* cu for all $c \in \mathbb{F}, u \in V$

Axioms:

- 1. Closure under VA
- 2. Commutative Law for VA
- 3. Associative Law for VA
- 4. Existence of the Zero Vector
- 5. Existence of Additive Inverse
- 6. Closure under SM
- 7. For all $b,c\in\mathbb{F}$ and $u\in V$, b(cu)=(bc)u
- 8. For all $u \in V$, 1u = u
- 9. (Distributive Law I) For all $c \in \mathbb{F}$ and $u, v \in V$, c(u+v) = cu+cv
- 10. (Distributive Law II) For all $b,c\in\mathbb{F}$ and $u\in V$, (b+c)u=bu+cu

Prop 8.2.4 Additional properties of a vector space

1. Uniqueness of the Zero Vector 2. Uniqueness of the Additive Inverse 3. For all $u \in V$, $0\mathbf{u} = \mathbf{0}$ and (-1)u = -u4. For all $c \in \mathbb{F}$, $c\mathbf{0} = \mathbf{0}$ 5. If cu = 0 where $c \in \mathbb{F}$ and $u \in V$, then c = 0 or u = 0.

8.3 Subspaces

Def 8.3.2 A subset *W* of a vector space *V* is called a **subspace** of *V* if *W* is itself a vector space using the same VA and SM as in *V*.

Note: $\{0\}$ and V are called *trivial subspaces* of V. Other subspaces are called *proper* subspaces of V.

Thm 8.3.4 A subset W of V is a subspace of V only if it satisfies property 4, 1, 6 of Def 8.2.2

Remark 8.3.5. A nonempty subset W of V is a subspace of V iff for all $a, b \in \mathbb{F}$ and $u, v \in W$, then $au + bv \in W$

Thm 8.3.8 The intersection of 2 subspaces is a subspace.

Note: The union of two subspaces might not be a vector space, e.g. $W_1 = \{(x,0) \mid x \in \mathbb{F}\}$ and $W_2 = \{(0,y) \mid y \in \mathbb{F}\}$

Def 8.3.11 Let W_1 and W_2 be subspaces of a vector space V. The **sum** of W_1 and W_2 is defined to be the set $W_1 + W_2 = \{w_1 + w_2 \mid w_1 \in W_1, w_2 \in W_2\}$

Thm 8.3.12 The sum of subspaces is a subspace.

Remark 8.3.14 Let W_1 and W_2 be subspaces of a vector space V. Then $W_1 + W_2$ is the smallest subspace of V that contains both W_1 and W_2 .

Tut 1. Let W_1 and W_2 be subspaces of a vector space V, then $W_1 \cup W_2$ is a subspace of V iff $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$.

8.4 Linear Spans and Linear Independence

Let V be a vector space over a field \mathbb{F} and B be a nonempty subset of V

Def 8.4.2 Let $v_1, v_2, \ldots, v_m \in V$. For any scalars $c_1, c_2, \ldots c_m$, the vector $c_1v_1 + c_2v_2 + \ldots c_mv_m$ is called a **linear combination** of v_1, v_2, \ldots, v_m . (Note: *m* is finite)

Thm 8.4.3 The set W of all linear combinations of (finite) vectors taken from B is a subspace of V

Def 8.4.4 The subspace W in Thm 8.4.3 is called the subspace of V spanned by B and we write $W = \operatorname{span}_{\mathbb{F}}(B)$. We also say W is a *linear span* of B and B spans W. Note that $B \subseteq W$

Def 8.4.8

- 1. Let $v_1, v_2, \ldots, v_k \in V$. The vectors are **linearly independent** if the vector equation $c_1v_1 + c_2v_2 + \ldots + c_kv_k = \mathbf{0}$ has only the trivial solution $c_1 = c_2 = \cdots = c_k = 0$
- 2. B is **linearly independent** if for every finite subset $\{v_1, v_2, \ldots, v_k\}$ of B, v_1, v_2, \ldots, v_k are linearly independent.

Remark 8.4.9 Linear independence is used to determine whether there are redundant vectors in a set.

8.5 Bases and Dimensions

Def 8.5.1 A subset *B* of a vector space *V* is called a **basis** for *V* if *B* is lin. ind. and *B* spans *V*

A vector space V is called *finite dimensional* if it has a basis consisting of finitely many vectors; otherwise, V is called *infinite dimensional*

Remark 8.5.2

- 1. For convenience, the empty set \emptyset is defined as the basis for a zero space
- 2. Every vector space has a basis. Proof by Zorn's Lemma

Lemma 8.5.5 Let V be a finite dimensional vector space and $B = \{v_1, v_2, ..., v_n\}$ a basis for V. . Any vector $u \in V$ can then be expressed *uniquely* as a linear combination of vectors in B.

Def 8.5.6 Let V be a finite dimensional vector space over a field \mathbb{F} where V is not a zero space

- 1. A basis $B = \{v_1, v_2, \dots, v_n\}$ for V is called an *ordered basis* if the vectors in B have a fixed order s.t. v_1 is the first vector, v_2 is the second vector etc.
- 2. Let $B = \{v_1, v_2, \dots, v_n\}$ be an ordered basis for V and let $u \in V$. If $u = c_1v_1 + c_2v_2 + \dots + c_nv_n$ for $c_1, c_2, \dots, c_n \in \mathbb{F}$ then the coefficients c_1, c_2, \dots, c_n are called the **coordinates** of urelative to the basis B. In particular the vector $(u)_B = (c_1, c_2, \dots, c_n)$ or $[u]_B = (c_1, c_2, \dots, c_n)^T$ in \mathbb{F}^n is called the **coordinate vector** of u relative to the basis B.

Lemma 8.5.7 Let V be a finite dimensional vector space over a field \mathbb{F} where V is not a zero space and let B be its ordered basis.

1. For any $u, v \in V$, u = v iff $(u)_B = (v)_B$ 2. For any $v_1, v_2, \ldots v_r \in V$ and $c_1, c_2, \ldots c_r \in \mathbb{F}$, $(c_1v_1 + c_2v_2 + \cdots c_rv_r)_B = c_1(v_1)_B + c_2(v_2)_B + \cdots c_r(v_r)_B$ **Thm 8.5.10** Let V be a vector space with a basis of n vectors. Then

- 1. any subset of V with more than n vectors is always linearly dependent
- 2. any subset of V with less than n vectors cannot span V.

Def 8.5.11 The **dimension** of a finite dimensional vector space V over a field \mathbb{F} denoted by $dim_{\mathbb{F}}(V)$ is defined to be the number of vectors in a basis for V. In addition, we define the dimension of a zero space to be 0.

Thm 8.5.13 Let *V* be a finite dimensional vector space and *B* a subset of *V*. The following are equivalent:

- 1. B is a basis for V
- 2. *B* is linearly independent and |B| = dim(V)
- 3. *B* spans *V* and |B| = dim(V)

Thm 8.5.15 Let W be a subspace of a finite dimensional vector space V. Then

1. $dim(W) \le dim(V)$ 2. if dim(W) = dim(V), then W = V.

Remark:

- 1. Row equivalent matrices have the same rowspace but may not have the same column space
- 2. Let *A* be a matrix and *R* a row-echelon form of *A*. A basis for the column space of *A* can be obtained by taking the columns of *A* that correspond to the pivot columns in *R*. A basis for the rowspace of *A* can be obtained by taking the set of nonzero rows in *R* (or the corresponding rows in *A*).

Thm 8.5.17 Let *V* be a finite dimensional vector space. Suppose *C* is a linearly independent subset of *V*. Then there exists a basis *B* for *V* s.t. $C \subseteq B$.

To extend a basis, put the current basis in rows, do Gaussian elimination, and add (e_i) if column *i* is not a pivot column.

Tut 2. Let W_1 and W_2 be finite dimensional subspaces of a vector space.

1. Let B_1,B_2 be basis for W_1,W_2 respectively. Then $\mathrm{span}(B_1\cup B_2)=W_1+W_2$ 2. $\dim(W_1+W_2)=\dim(W_1)+\dim(W_2)-\dim(W_1\cap W_2)$

8.6 Direct Sums of Subspaces

Let W_1 and W_2 be subspaces of a vector space V.

Def 8.6.3 We say that the subspace $W_1 \oplus W_2$ is a **direct sum** of W_1 and W_2 if every vector $u \in W_1 + W_2$ can be expressed **uniquely** as $u = w_1 + w_2$ where $w_1 \in W_1$ and $w_2 \in W_2$.

Theorem 8.6.5 $W_1 + W_2$ is a direct sum iff $W_1 \cap W_2 = \{0\}$

Tut 1 Q4. $W_1 + W_2$ is the smallest subspace of V that contains both W_1 and W_2 .

Tut 1 Q5. $W_1 \cup W_2$ is a subspace of V iff $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$

Theorem 8.6.7 Suppose $W_1 + W_2$ is a direct sum.

1. If B_1 and B_2 are bases for W_1 and W_2 respectively, then $B_1 \cup B_2$ is a basis for $W_1 \oplus W_2$ 2. If both W_1 and W_2 are finite dimensional, then dim $(W_1 \oplus W_2) = \dim(W_1) + \dim(W_2)$

Remark 8.6.8 Even if $W_1 + W_2$ is not a direct sum, it is still true that span $(B_1 \cup B_2) = W_1 + W_2$.

Def 8.6.9 We can generalize the definition of **sum** and **direct sum** to *k* subspaces of *V*. $W_1 + \cdots + W_k$ is a direct sum iff $W_1 \cap W_2 = \{\mathbf{0}\}, (W_1 + W_2) \cap W_3 = \{\mathbf{0}\}, \ldots$, etc

8.7 Cosets and Quotient Spaces

Let W be a subspace of a vector space V.

Def 8.7.1 For $\mathbf{u} \in V$, the set $W + \mathbf{u} = \{w + \mathbf{u} \mid w \in W\}$ is called the **coset of** *W* **containing** \mathbf{u}

Thm 8.7.3

1. For any $v, w \in V$, the following are equivalent:

1. $v \in W + w$ 2. $w \in W + v$

- 3. $v w \in W$
- 4. W + v = W + w
- 2. For any $v,w \in V$, either W+v=W+w or $(W+v) \cap (W+w)=\emptyset$

Lemma 8.7.5

1. Suppose $u_1, u_2, v_1, v_2 \in V$ s.t. $W+u_1=W+u_2$ and $W+v_1=W+v_2$. Then $W+(u_1+v_1)=W+(u_2+v_2)$

2. Suppose $u_1, u_2 \in V$ s.t. $W + u_1 = W + u_2$. Then $W + cu_1 = W + cu_2$ for all $c \in \mathbb{F}$

Def 8.7.6

- 1. We define the *addition* of two cosets by (W + u) + (W + v) = W + (u + v) for $u, v \in V$.
- 2. We define the *scalar multiplication* of a coset by c(W + u) = W + cu for $c \in \mathbb{F}$ and $u \in V$.

Thm 8.7.8 Denote the set of all cosets of W in V by $V/W = \{W + u \mid u \in V\}$. Then V/W is a vector space over \mathbb{F} using the addition and scalar multiplication defined in Def 8.7.6

Its zero vector is $W(=W + \mathbf{0})$.

Def 8.7.9 The vector space V/W is called the **quotient space of** V **modulo** W

Thm 8.7.11 Let $\{w_1, w_2, ..., w_m\}$ be a basis for *W*.

- 1. For $v_1, v_2, \ldots, v_k \in V$, $\{v_1, v_2, \ldots, v_k, w_1, w_2, \ldots, w_m\}$ is a basis for V iff $\{W + v_1, W + v_2, \ldots, W + v_k\}$ is a basis for V/W
- 2. dim(V/W) = dim(V) dim(W)

9 General Linear Transformations

9.1 Linear Transformations

Let V and W be vector spaces over the same field \mathbb{F} .

Def 9.1.2 A *linear transformation* $T: V \rightarrow W$ is a mapping from V to W s.t.

1. For all $u, v \in V$, T(u + v) = T(u) + T(v)2. For all $c \in \mathbf{F}$ and $u \in V$, T(cu) = cT(u).

If W = V, the linear transformation $T : V \to V$ is called a *linear operator* on VIf $W = \mathbb{F}$, the linear transformation $T : V \to \mathbb{F}$ is called a *linear functional* on V

Remark 9.1.3 A mapping $T: V \to W$ is a linear transformation iff T(au + bv) = aT(u) + bT(v) for all $a, b \in \mathbb{F}$ and $u, v \in V$.

Prop 9.1.5 If $T: V \to W$ is a linear transformation, then $T(\mathbf{0}) = \mathbf{0}$.

Remark 9.1.6 Suppose V has a basis B and let T be a linear transformation.

- *T* is completely determined by the images of vectors from *B*, i.e. T(u) is completely determined by $T(v_1), \ldots T(v_m)$ for $v_1, \ldots, v_m \in V$
- We can define a linear transformation $S: V \to W$ by using the basis B, i.e. setting the value of S(v) for all $v \in B$

9.2 Matrices for Linear Transformations

- $[u]_B$ denotes *column* coordinate vector relative to B. $(u)_B$ denotes *row* coordinate vector relative to B.
- Let $T: V \to W$ be a linear transformation where V and W are finite dimensional vector spaces over a field \mathbb{F} s.t. $n = dim(V) \ge 1$ and $m = dim(W) \ge 1$.
- *B* and *C* are ordered bases for *V* and *W* respectively

Thm 9.2.1 Let $T: V \to W$ be a linear transformation. For any ordered bases B and C for V and W respectively, there exists an $\dim(W) \times \dim(V)$ matrix \mathbf{A} s.t. $[T(u)]_C = \mathbf{A}[u]_B$ for all $u \in V$

Def 9.2.2. Let $B = \{v_1, v_2, \dots, v_n\}$. The matrix $\mathbf{A} = ([T(v_1)]_C \quad [T(v_2)]_C \quad \cdots \quad [T(v_n)]_C)$ is called the *matrix for T relative to the ordered bases B and C*. This matrix \mathbf{A} is usually denoted by $[T]_{C,B}$.

Note that $[T(u)]_C = [T]_{C,B}[u]_B$ for all $u \in V$

If W = V and C = B, we simply denote $[T]_{B,B}$ by $[T]_B$ and called it the matrix for T relative to the ordered basis B.

Lemma 9.2.3 Let T_1 and T_2 be a linear transformation. For any B and C, we have $T_1 = T_2$ iff $[T_1]_{C,B} = [T_2]_{C,B}$

Thm 9.2.6 Suppose $I_V: V \to V$. Suppose *B* and *C* are two ordered bases for *V*. For any $u \in V$, the matrix $[I_V]_{C,B}$

• converts $[u]_B$ to $[u]_C$, i.e. $[u]_C = [I_V(u)]_C = [I_V]_{C,B}[u]_B$.

- is called the **transition matrix** from *B* to *C*.
- is invertible, and its inverse is the transition matrix from C to B, i.e. $[I_V]_{B,C}$

9.3 Compositions of Linear Transformations

Let $S: U \to V$ and $T: V \to W$ be linear transformations. Suppose U, V, W are finite dimensional where $dim(U), dim(V), dim(W) \ge 1$.

Thm 9.3.1 Then the composition mapping $T \circ S : U \to W$, defined by $(T \circ S)(u) = T(S(u))$ for $u \in U$ is also a linear transformation.

Thm 9.3.3 Let A, B, C be ordered bases for U, V, W respectively. Then $[T \circ S]_{C,A} = [T]_{C,B}[S]_{B,A}$

Def 9.3.5 Let T be a linear operator. For any nonnegative integer m, define

$$T^m = egin{cases} I_v & ext{if} \quad m=0 \ \underline{T\circ T\circ \cdots \circ T} & ext{if} \quad m\geq 1 \ \underline{T \circ T \circ \cdots \circ T} & ext{if} \quad m\geq 1 \end{cases}$$

Corollary 9.3.6 Let T be a linear operator. Let B be an ordered basis. Then $[T^m]_B = ([T]_B)^m$

Lemma 9.3.8 Let *T* be a linear operator. Let *B*, *C* are two ordered bases for *V* and *P* the transition matrix from *B* to *C*, i.e. $P = [I_V]_{C,B}$. Then $[T]_B = P^{-1}[T]_C P$

Def 9.3.9 Let \mathbb{F} be a field and $A, B \in M_{n \times n}(\mathbb{F})$. *B* is said to be **similar** to *A* if there exists an invertible matrix $P \in M_{n \times n}(\mathbb{F})$ s.t. $B = P^{-1}AP$

Thm 9.3.10 Let *T* be a linear operator on *V* and let *C* be an ordered basis for *V*. Then an $n \times n$ matrix *D* over \mathbb{F} is similar to $[T]_C$ iff there exists an ordered basis *B* for *V* s.t. $D = [T]_B$.

9.4 The Vector Space L(V, W)

Let *V* and *W* be vector spaces over the same field \mathbb{F} . Suppose *V*, *W* are finite dimensional where $dim(V), dim(W) \ge 1$ with *B* and *C* be ordered basis for *V* and *W* respectively.

Def 9.4.1

- 1. Let $T_1, T_2: V \to W$ be linear transformations. We define a mapping $T_1 + T_2: V \to W$ by $(T_1 + T_2)(u) = T_1(u) + T_2(u)$ for $u \in V$.
- 2. Let $T: V \to W$ be a linear transformation and $c \in \mathbb{F}$ We define a mapping $cT: V \to W$ by (cT)(u) = cT(u) for $u \in V$.

Both mappings $T_1 + T_2$ and cT are linear transformations.

Prop 9.4.3

1. If $T_1, T_2: V \to W$ are linear transformations, then $[T_1 + T_2]_{C,B} = [T_1]_{C,B} + [T_2]_{C,B}$ 2. If $T: V \to W$ be a linear transformation and $c \in \mathbb{F}$, then $[cT]_{C,B} = c[T]_{C,B}$

Remark 9.4.4: Matrices and linear transformations have a lot of similarities. The observations above show their relations in addition and scalar multiplication.

- <u>Thm 9.3.3</u> shows that the composition of linear transformations is equivalent to matrix multiplication.
- Thm 9.6.6 shows a corresponding analog of matrix inverse in linear transformations.

Thm 9.4.5 Let L(V, W) be the set of all linear transformations from V to W. Then L(V, W) is a vector space over \mathbb{F} with addition and scalar multiplication defined in Def 9.4.1.

Furthermore, if V and W are finite dimensional, then $\dim(L(V, W)) = \dim(V) \dim(W)$

Def 9.4.6 The vector space $L(V, \mathbb{F})$ is called the **dual space** of V and is denoted by V^*

By Thm 9.4.5. $\dim(V^*) = \dim(V)$

9.5 Kernels and Ranges

Let $T: V \to W$ be a linear transformation.

Def 9.5.1

- 1. The subset Ker(T) = $\{u \in V \mid T(u) = 0\}$ of V is called the **kernel** of T. Ker(T) is also known as the **nullspace** of T and denoted by N(T)
- 2. The subset $R(T) = \{T(u) \mid u \in V\}$ of W is called the **range** of T

Thm 9.5.2 Ker(T) is a subspace of V, and R(T) is a subspace of W.

Def 9.5.4

- 1. If Ker(T) is finite dimensional, then dim(Ker(T)) is called the **nullity** of *T* and is denoted by nullity(T)
- 2. If R(T) is finite dimensional, then dim(R(T)) is called the **rank** of *T* and is denoted by rank(T)

Lemma 9.5.6 Suppose V and W are finite dimensional with dim(V) ≥ 1 and dim(W) ≥ 1 . For any ordered bases B and C for V and W respectively

- 1. $\{[u]_B \mid u \in \operatorname{Ker}(T)\}$ is the nullspace of $[T]_{C,B}$ and nullity(T) = nullity($[T]_{C,B}$)
- 2. $\{[u]_C \mid u \in \mathbf{R}(T)\}$ is the column space of $[T]_{C,B}$ and rank(T) = rank($[T]_{C,B}$)

Thm 9.5.7 (Dimension Theorem for Linear Transformations). Let $T : V \to W$ where V and W are finite dimensional. Then, rank(T) + nullity(T) = dim(V)

Thm 9.5.9 Suppose *B* and *C* are subsets of *V* s.t. *B* is a basis for Ker(T) and $\{T(v) \mid v \in C\}$ is a basis for R(T) and for any $v, v' \in C$ if $v \neq v'$, then $T(v) \neq T(v')$. Then $B \cup C$ is a basis for *V*.

Def 9.5.11 Let $f: A \rightarrow B$ be a mapping.

- 1. *f* is **injective** or *one-to-one* if $\forall z \in B$, there exists at most one $x \in A$ s.t. f(x) = z.
- 2. *f* is **surjective** or *onto* if $\forall z \in B$, there exists at least one $x \in A$ s.t. f(x) = z.

3. *f* is **bijective** if it is both injective and surjective.

Prop 9.5.12

1. T is injective iff Ker(T) = $\{0\}$ iff nullity(T) = 0

2. T is surjective iff R(T) = W.

Note:

- 1. Let $S: U \to V$ and $T: V \to W$ be linear transformations. $Ker(S) \subseteq Ker(T \circ S)$ and $R(T \circ S) \subseteq R(T)$
- 2. Let $S, T: V \to W$ be linear transformations. Then $R(S+T) \subseteq R(S) + R(T)$ and $Ker(S) \cap Ker(T) \subseteq Ker(S+T)$

9.6 Isomorphism

Let $T: V \to W$ be a linear transformation.

Def 9.6.1 The linear transformation $T: V \to W$ is called an **isomorphism** from V onto W if T is bijective.

Def 9.6.3 A mapping $T: V \to W$ is bijective iff there exists a mapping $S: W \to V$ s.t. $S \circ T = I_V$ and $T \circ S = I_W$ where I_V and I_W are identity operators on V and W respectively. The mapping S is known as the *inverse* of T and is denoted by T^{-1} . Thus a bijective mapping is also called an *invertible mapping*

Thm 9.6.4 If T is an isomorphism, then T^{-1} is a linear transformation and hence is also an isomorphism.

Thm 9.6.6 Suppose V and W are finite dimensional with dim(V) = dim(W) \geq 1. Let B and C be ordered bases for V and W respectively.

- 1. *T* is an isomorphism iff $[T]_{C,B}$ is an invertible matrix
- 2. If T is an isomorphism, $[T^{-1}]_{B,C} = ([T]_{C,B})^{-1}$

Thm 9.6.8 Let $S: W \to V$ and $T: V \to W$ be linear transformations s.t. $T \circ S = I_W$.

- 1. S is injective and T is surjective.
- 2. If V and W are finite dimensional and dim(V) = dim(W), then S and T are isomorphisms, $S^{-1} = T$ and $T^{-1} = S$.

Def 9.6.10 Let *V* and *W* be vector spaces over a field \mathbb{F} . If there exists an isomorphism from *V* onto *W*, then *V* is said to be **isomorphic** to *W* and we write $V \cong_{\mathbb{F}} W$ or simply $V \cong W$.

Thm 9.6.13 Let V and W be finite dimensional vector spaces over the same field. Then V is isomorphic to W iff dim(V) = dim(W)

Example: $\mathcal{M}_{n \times n}(\mathbf{F}) \cong_{\mathbb{F}} \mathbb{F}^{mn}$, $\mathcal{P}_n(\mathbb{F}) \cong_{\mathbb{F}} \mathbb{F}^{n+1}$, $\mathbb{C}^n \cong_{\mathbb{R}} \mathbb{R}^{2n}$

Thm 9.6.15 (The First Isomorphism Theorem). Let $T: V \to W$ be a linear transformation. Then $V/\text{Ker}(T) \cong R(T)$

10 Multilinear Forms and Determinants

10.1 Permutations

Def 10.1.2 A **permutation** σ of $\{1, 2, ..., n\}$ is a bijective mapping from $\{1, 2, ..., n\}$ to $\{1, 2, ..., n\}$. We usually represent σ by $\begin{pmatrix} 1 & 2 & \cdots & n \\ \sigma(1) & \sigma(2) & \cdots & \sigma(n) \end{pmatrix}$. The set of all permutations of $\{1, 2, ..., n\}$ is denoted by S_n . Note that $|S_n| = n!$

Notation 10.1.4

- 1. For $\sigma, \tau \in S_n$, $\sigma \tau = \sigma \circ \tau$ is also a permutation.
- 2. For $\alpha, \beta \in \{1, 2, \dots, n\}$, let $\phi_{\alpha, \beta}$ denote the permutation of $\{1, 2, \dots, n\}$ s.t.

$$\phi_{lpha,eta}(k) = egin{cases} k & ext{if} \ k
eq lpha,eta \ lpha & ext{if} \ k = lpha \ eta & ext{if} \ k = eta \ eta & ext{if} \ k = eta \ eta & ext{if} \ k = eta \end{cases}$$

This permutation is called the **transposition** of α and β . Note that $\phi_{\alpha,\beta} = \phi_{\beta,\alpha}$ and $\phi_{\alpha,\beta}^{-1} = \phi_{\alpha,\beta}$

Lemma 10.1.6

 $\begin{array}{l} \mathsf{1.} \left\{ \sigma^{-1} \mid \sigma \in S_n \right\} = S_n \\ \mathsf{2.} \text{ For any } \tau \in S_n \text{, } \left\{ \tau \sigma \mid \sigma \in S_n \right\} = \left\{ \sigma \tau \mid \sigma \in S_n \right\} = S_n \end{array}$

Lemma 10.1.7 For every $\sigma \in S_n$, there exists $\alpha_1, \alpha_2, \ldots \alpha_k \in \{1, 2, \ldots, n\}$ s.t.

 $\sigma = \sigma_{lpha_1, lpha_1+1} \sigma_{lpha_2, lpha_2+1} \cdots \sigma_{lpha_k, lpha_k+1}$

Def 10.1.9 Let $\sigma \in S_n$. An **inversion** occurs in σ if $\sigma(i) > \sigma(j)$ for i < j. If the total number of inversions in σ is even, σ is called an **even** permutation; otherwise σ is an **odd** permutation.

The **sign** (or **parity**) of σ , denoted as $sgn(\sigma)$ is defined to be 1 if σ is even and -1 if σ is odd.

Thm 10.1.11 For any $\sigma, \tau \in S_n$, $\operatorname{sgn}(\sigma \tau) = \operatorname{sgn}(\sigma)\operatorname{sgn}(\tau)$. Moreover, $\operatorname{sgn}(\phi_{\alpha,\beta}) = -1$

Corollary 10.1.12

- 1. If $\sigma \in S_n$ is a product of k transpositions, then $\mathrm{sgn}(\sigma) = (-1)^k$
- 2. A permutation is even (respectively, odd) if it is a product of even (respectively, odd) number of transpositions.
- 3. For any $\sigma \in S_n$, $\operatorname{sgn}(\sigma^{-1}) = \operatorname{sgn}(\sigma)$

10.2 Multilinear Forms

Def 10.2.1 Let *V* be a vector space over a field \mathbb{F} . A mapping $T: V^n \to \mathbb{F}$ is called a **multilinear form** on *V* if for each $i, 1 \le i \le n$, $T(x_i, \dots, x_{i-1}, \dots, x_{i-1}) = aT(x_i, \dots, x_{i-1}, \dots, x_{i-1}) + bT(x_i, \dots, x_{i-1}, \dots, x_{i-1})$

 $T(u_1, \ldots u_{i-1}, av + bw, u_{i+1}, \ldots, u_n) = aT(u_1, \ldots u_{i-1}, v, u_{i+1}, \ldots, u_n) + bT(u_1, \ldots u_{i-1}, w, u_{i+1}, \ldots, u_n)$ for all $a, b \in \mathbb{F}$ and $u_1, \ldots u_{i-1}, u_{i+1}, \ldots, u_n, v, w \in V$

A multilinear form *T* on *V* is called **alternative** if $T(u_1, u_2, ..., u_n) = 0$ whenever $u_{\alpha} = u_{\beta}$ for some $\alpha \neq \beta$

Define $P:\mathcal{M}_{n imes n}(\mathbb{F}) o \mathbb{F}$ by

$$P(A) = \sum_{\sigma \in S_n} a_{\sigma(1),1} a_{\sigma(2),2} \cdots a_{\sigma(n),n}$$

for $A = (a_{ij}) \in \mathcal{M}_{n \times n}(\mathbb{F})$. The value P(A) is known as the **permanent** of A.

Thm 10.2.3 Let $T: V^n \to \mathbb{F}$ be an alternative multilinear form on a vector space V. Then for all $\sigma \in S_n$ and $u_1, u_2, \ldots, u_n \in V$, we have $T(u_1, u_2, \ldots, u_n) = \operatorname{sgn}(\sigma) \cdot T(u_{\sigma(1)}, u_{\sigma(2)}, \ldots, u_{\sigma(n)})$

Remark 10.2.4 Let $T: V^n \to \mathbb{F}$ be a multilinear form on a finite dimensional vector space V over a field \mathbb{F} . Fix a basis $\{v_1, v_2, \ldots, v_m\}$ for V. Take any $u_1, u_2, \ldots, u_n \in V$, let

 $egin{array}{rcl} u_1&=&a_{11}v_1+a_{21}v_2+\dots+a_{m1}v_m\ u_2&=&a_{12}v_1+a_{22}v_2+\dots+a_{m2}v_m\ dots\ u_n&=&a_{1n}v_n+a_{2n}v_2+\dots+a_{mn}v_m \end{array}$

where $a_{11}, a_{12}, \ldots, a_{mn} \in \mathbb{F}$

1. Let \mathcal{F} be the set of all mapping from $\{1, 2, \dots, n\}$ to $\{1, 2, \dots, m\}$. We have

$$T(u_1, u_2, \dots, u_n) = \sum_{f \in \mathcal{F}} a_{f(1),1} a_{f(2),2} \cdots a_{f(n),n} \, T(v_{f(1)}, v_{f(2)}, \dots, v_{f(n)})$$

- 2. Suppose T is an alternative form.
 - 1. If m < n, then T is a zero mapping.
 - 2. If $m \ge n$, then (10.3) still holds if we change the set \mathcal{F} to the set of all injective mapping. In particular, when m = n we have

 $T(u_1,u_2,\ldots,u_n) = \sum_{\sigma\in S_n} \mathrm{sgn}(\sigma) a_{\sigma(1),1} a_{\sigma(2),2} \cdots a_{\sigma(n),n} \, T(v_1,v_2,\ldots,v_n)$

10.3 Determinants

Def 10.3.1 A mapping $D: M_{n \times n}(\mathbb{F}) \to \mathbb{F}$ is called a *determinant function* on $M_{n \times n}(\mathbb{F})$ if it satisfies the following axioms:

- 1. By regarding the columns of matrices in $M_{n \times n}(\mathbb{F})$ as vectors in \mathbb{F}^n , *D* is a multilinear form on \mathbb{F}^n .
- 2. D(A) = 0 if $A \in M_{n \times n}(\mathbb{F})$ has two identical columns, i.e. as a multilinear form on \mathbb{F}^n , D is alternative.

3.
$$D(I_n) = 1$$

Theorem 10.3.2 There exists one and only one determinant function on $\mathcal{M}_{n \times n}(\mathbb{F})$ and it is the function det : $\mathcal{M}_{n \times n}(\mathbb{F}) \to \mathbb{F}$ defined by

$$\det(A) = \sum_{\sigma \in S_n} \mathrm{sgn}(\sigma) a_{\sigma(1),1} a_{\sigma(2),2} \cdots a_{\sigma(n),n}$$

for $A = (a_{ij}) \in \mathcal{M}_{n \times n}(\mathbb{F})$. This formula is known as the classical definition of determinants.

Lemma 10.3.4 Let $A \in \mathcal{M}_{n \times n}(\mathbb{F})$. Then $\det(A) = \det(A^T)$

Thm 10.3.5 (Cofactor expansions). Let $A = (a_{ij}) \in \mathcal{M}_{n \times n}(\mathbb{F})$. Define \tilde{A}_{ij} to be the $(n-1) \times (n-1)$ matrix obtained from A by deleting the *i*th row and the *j*th column. Then for any $\alpha = 1, 2, \ldots, n$ and $\beta = 1, 2, \ldots, n$,

$$\det(A) = a_{lpha 1} A_{lpha 1} + a_{lpha 2} A_{lpha 2} + \dots + a_{lpha n} A_{lpha n} \ = a_{1eta} A_{1eta} + a_{2eta} A_{2eta} + \dots + a_{neta} A_{neta}$$

where $A_{ij} = (-1)^{i+j} \det(ilde{A_{ij}}).$

11 Diagonalization and Jordan Canonical Forms

11.1 Eigenvalues and Diagonalization

Let T be a linear operator on a finite dimensional vector space V with $\dim(V) \ge 1$.

Def 11.1.2 Let *V* be a vector space. A nonzero vector $u \in V$ is called an *eigenvector* of *T* if $T(u) = \lambda u$ for some scalar *eigenvalue* λ .

Def 11.1.4 det(T) is the determinant of the matrix $[T]_B$ where B is any ordered basis for V.

Remark 11.1.5 The determinant of T is independent of the choice of basis B.

Thm 11.1.6 For a scalar λ , let $\lambda I_V - T$ be the linear operator defined by $(\lambda I_V - T)(u) = \lambda u - T(u)$ for some $u \in V$

- 1. λ is an eigenvalue of T iff $det(\lambda I_V T) = 0$. (λ is a solution to the charateristic polynomial of T)
- 2. $u \in V$ is an eigenvector of T associated with λ iff u is a nonzero vector in the **eigenspace** $\operatorname{Ker}(T \lambda I_V)$

Notation 11.1.7

- 1. Denote the characteristic polynomial of T, $c_T(x) = det(xI_V T)$
- 2. Denote the eigenspace of A associated with λ as $E_{\lambda}(A)$

Remark 11.1.8 For a basis *B* of *V*, we have $c_T(x) = c_{[T]_B}(x)$, a monic polynomial of degree $\dim(V)$

Def 11.1.10 *T* is **diagonalizable** if there exists an ordered basis *B* for *V* s.t. $[T]_B$ is a diagonal matrix

Thm 11.1.11 T is diagonalizable iff V has a basis B s.t. every vector in B is an eigenvector of T

Algorithm 11.1.12 Determining whether the linear operator *T* is diagonalizable.

1. Find a basis C for V and compute $A = [T]_C$

2. Write $c_A(x) = \prod_{i=1}^k (x-\lambda_i)^{r_i}$ where λ_i are distinct and $\sum_{i=1}^k = dim(V)$

- 3. For each eigenvalue λ_i , find a basis B_{λ_i} for the eigenspace $E_{\lambda_i}(T)$. If $|B_{\lambda_i}| < r_i$ for some i, then T is not diagonalizable
- 4. $B = \bigcup_{i=1}^{\kappa} B_{\lambda_i}$ is a basis for V and $D = [T]_B$ is a diagonal matrix. Note that $D = P^{-1}AP$ where $P = [I_V]_{C,B}$ is the transition matrix from B to C.

If we let C be the standard bases, then columns of P are eigenvectors of T.

11.2 Triangular Canonical Forms

Lemma 11.2.2 Suppose A is an $r \times m$ matrix, B is an $r \times n$ matrix, C is an $s \times m$ matrix, D is an $s \times n$ matrix, E is an $m \times t$ matrix, F is an $m \times u$ matrix, G is an $n \times t$ matrix, H is an $n \times u$ matrix, then

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} E & F \\ G & H \end{pmatrix} = \begin{pmatrix} AE + BG & AF + BH \\ CE + DG & CF + DH \end{pmatrix}$$

Thm 11.2.3 (Triangular Canonical Forms). Let \mathbb{F} be a field.

- 1. Let $A \in \mathcal{M}_{n \times n}(\mathbb{F})$. If the characteristic polynomial $c_A(x)$ can be factorized over linear factors over \mathbb{F} , then there exists an invertible matrix $P \in \mathcal{M}_{n \times n}(\mathbb{F})$ s.t. $P^{-1}AP$ is an upper triangular matrix.
- 2. Let *T* be a linear operator on a finite dimensional vector space *V* with $\dim(V) \ge 1$. If the characteristic polynomial $c_T(x)$ can be factorized over linear factors over \mathbb{F} , then there exists an ordered basis *B* for *V* s.t. $[T]_B$ is an upper triangular matrix.

Tut 7

1. A linear operator T on a finite dimensional vector space V is **triangularizable** if there exists an ordered basis B for V s.t. $[T]_B$ is a triangular matrix. Then T is triangularizable iff its characteristic polynomial can be factorized into linear factors.

11.3 Invariant Subspaces

Def 11.3.1 Let V be a vector space and $T: V \to V$ a linear operator. A subspace W of V is said to be T-invariant if T(u) is contained in W for all $u \in W$, i.e. $T[W] = \{T(u) \mid u \in W\} \subseteq W$.

If W is a T-invariant subspace of V, the linear operator $T|_W: W \to W$ defined by $T|_W(u) = T(u)$ for $u \in W$ is called the **restriction** of T on W.

Prop 11.3.3 Let S and T be linear operators on V. Suppose W is a subspace of V which is both S-invariant and T-invariant. Then

1. *W* is $(S \circ T)$ -invariant and $(S \circ T)|_W = S|_W \circ T|_W$ 2. *W* is (S + T)-invariant and $(S + T)|_W = S|_W + T|_W$ 3. for any scalar *c*, *W* is *cT*-invariant and $(cT)|_W = c(T|_W)$

Discussion 11.3.4 Suppose *W* is a *T*-invariant subspace of *V* with $\dim(W) \ge 1$. Let $\dim(W) = m$ and $\dim(V) = n \ge m$. Let *C* be an ordered basis of *W* and *B* a basis for *V* extended from *C*. Then, $[T]_B = \begin{pmatrix} A_1 & A_2 \\ 0 & A_3 \end{pmatrix}$ where $A_1 = [T|_W]_C$, and $(A_2 A_3)^T$ is the coordinate vector w.r.t. *B* of the image of the basis extension under T.

Lemma 11.3.6 Let *D* be a square matrix s.t. $D = \begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$ where both *A* and *C* are square matrices. Then det(D) = det(A)det(C)

Thm 11.3.7 Let *T* be a linear operator on a finite dimensional vector space *V*. Suppose *W* is a *T*-invariant subspace of *V* with $\dim(W) \ge 1$, then $c_{T|W}(x) \mid c_T(x)$

Thm 11.3.10 Let *T* be a linear operator on a finite dimensional vector space *V*. Take a nonzero vector $u \in V$. Suppose **the** *T***-cyclic subspace** $W = \text{span}\{u, T(u), T^2(u), \ldots\}$

generated by u is finite dimensional.

- 1. dim(W) = k where k is the smallest positive integer s.t. $T^k(u)$ is a linear combination of $u, T(u), \ldots, T^{k-1}(u)$
- 2. Suppose $\dim(W) = k$ 1. $\{u, T(u), \dots, T^{k-1}(u)\}$ is a basis for W. 2. If $T^k(u) = a_0u + a_1T(u) + \dots + a_{k-1}T^{k-1}(u)$ where $a_0, a_1, \dots, a_{k-1} \in \mathbb{F}$, then $c_{T|_W}(x) = -a_0 - a_1x - \dots - a_{k-1}x^{k-1} + x^k$

Comment: The *T*-cyclic subspace, which is *T*-invariant, is a very useful invariant subspace as it helps to find a basis *B* s.t. $[T]_B$ is in a simpler form. See <u>Discussion 11.3.4</u>

Discussion 11.3.12 Suppose $V = W_1 \oplus W_2 \oplus \cdots \oplus W_k$ where W_t are *T*-invariant subspaces of V with $\dim(W_t) = n_t \ge 1$ for $t = 1, 2, \ldots, k$. For each t, let $C_t = \{v_1^{(t)}, v_2^{(t)}, \ldots, v_{n_t}^{(t)}\}$ be an ordered basis for W_t .

Let $[T|_{W_t}]_{C_t} = A_t$. Using $B = C_1 \cup C_2 \cup \cdots \cup C_k$ as an ordered basis for V, we obtain

$$[T]_B = egin{pmatrix} A_1 & 0 & & 0 \ 0 & A_2 & & 0 \ & & \ddots & \ 0 & 0 & & A_k \end{pmatrix}$$

Furthermore, $c_T(x) = \prod\limits_{i=1}^k c_{A_i}(x) = \prod\limits_{i=1}^k c_{T|_{W_i}}(x).$

11.4 Cayley-Hamilton Theorem

Notation 11.4.1 Let $\mathbb F$ be a field and let $p(x)=a_0+a_1x+\cdots a_mx^m$ where $a_0,a_1,\ldots a_m\in \mathbb F$

- 1. For a linear operator T on a vector space V over \mathbb{F} , we use p(T) to denote the linear operator $a_0I_V + a_1T + \cdots + a_mT^m$ on V.
- 2. For an n imes n matrix A over \mathbb{F} , we use p(A) to denote the n imes n matrix $a_o I_n + a_1 A + \dots + a_m A^m$

Lemma 11.4.2 Let *T* be a linear operator on a vector space *V* over \mathbb{F} and *A* be an $n \times n$ matrix over \mathbb{F} . In the following $p(x), q(x) \in \mathcal{P}(\mathbb{F})$

- 1. Suppose V is finite dimensional where $\dim(V) = n \ge 1$. For any ordered basis B for V, $[p(T)]_B = p([T]_B)$
- 2. If W is a T-invariant subspace of V, then W is also a p(T)-invariant subspace of V and $p(T)|_W = p(T|_W)$
- 3. Polynomial addition, scalar multiplication and polynomial multiplication also works if we substitute x for T (slightly different form: $u(T) = p(T) \circ q(T) = q(T) \circ p(T)$ for u(x) = p(x)q(x)) and A.

Thm 11.4.4 (Cayley-Hamilton Theorem)

- 1. Let T be a linear operator on a finite dimensional vector space V where $\dim(V) \ge 1$. Then $c_T(T) = O_V$, where O_V is the zero operator on V.
- 2. Let A be a square matrix. Then $c_A(A) = \mathbf{0}_n$.

11.5 Minimal Polynomials

Let T be a linear operator on a finite dimensional vector space V over \mathbb{F} where $\dim(V) \ge 1$.

Def 11.5.2 The **minimal polynomial** $m_T(x)$ of T is the monic polynomial p(x) of smallest degree s.t. $p(T) = O_V$, i.e. if q(x) is a nonzero polynomial over \mathbb{F} s.t. $q(T) = O_V$, then $\deg(q(x)) \ge \deg(p(x))$

The existence of a minimal polynomial is guaranteed by Cayley-Hamilton Thm.

The minimal polynomial for a zero mapping is $m_{O_V}(x) = x$

Lemma 11.5.5

- 1. Let p(x) be a polynomial over \mathbb{F} . Then $p(T) = O_V$ iff p(x) is divisible by the minimal polynomial of T.
- 2. If W is a T-invariant subspace of V with $\dim(W) \ge 1$, then the minimal polynomial of T is divisible by the minimal polynomial of $T|_W$
- 3. Suppose λ is an eigenvalue of T s.t. $c_T(x) = (x \lambda)^r q(x)$ where $x \lambda \nmid q(x)$. Then $m_T(x) = (x \lambda)^s q_1(x)$ where $1 \le s \le r$ and $q_1(x) \mid q(x)$

Thm 11.5.7 Let T be a linear operator on a vector space V. Suppose W_1 and W_2 are T-invariant subspace of V.

- 1. $W_1 + W_2$ is *T*-invariant.
- 2. If W_1 and W_2 are finite dimensional with $\dim(W_1) \ge 1$ and $\dim(W_2) \ge 1$, $m_{T|_{W_1+W_2}}(x) = \operatorname{lcm}(m_{T|_{W_1}}(x), m_{T|_{W_2}}(x))$

Thm 11.5.8 Suppose $c_T(x) = \prod_{i=1}^k (x - \lambda_i)^{r_i}$ where $\lambda_1, \lambda_2, \dots, \lambda_k$ are distinct eigenvalues of T. Then $m_T(x) = \prod_{i=1}^k (x - \lambda_i)^{s_i}$ where $1 \le s_i \le r_i$ for all i. Define $K_{\lambda_i}(T) = Ker((T - \lambda_i I_v)^{s_i})$ for $i = 1, 2, \dots, k$. Then, $V = K_{\lambda_1}(T) \oplus K_{\lambda_2}(T) \dots \oplus K_{\lambda_k}(T)$

1. $E_{\lambda_i}(T) \subseteq K_{\lambda_i}(T)$ 2. $K_{\lambda_i}(T)$ is a T-invariant subspace of V. 3. $m_{T|_{K_{\lambda_i}(T)}}(x) = (x - \lambda_i)^{s_i}$ 4. $c_{T|_{K_{\lambda_i}(T)}}(x) = (x - \lambda_i)^{r_i}$ 5. $\dim(K_{\lambda_i}(T)) = r_i$

Thm 11.5.10 Let $c_T(x) = \prod_{i=1}^k (x - \lambda_i)^{r_i}$ where $\lambda_1, \lambda_2, \ldots, \lambda_k$ are distinct eigenvalues of T. The following are equivalent:

1. *T* is diagonalizable 2. $m_T(x) = \prod_{i=1}^k (x - \lambda_i)$ 3. $\dim(E_{\lambda_i}(T)) = r_i$ for $i = 1, 2, \dots, k$ 4. $V = E_{\lambda_1}(T) \oplus E_{\lambda_2}(T) \dots \oplus E_{\lambda_k}(T)$ **Corollary 11.5.11** Let W be a T-invariant subspace of V with $dim(W) \ge 1$. If T is diagonalizable, then $T|_W$ is also diagonalizable.

HW4. Let W be a T-cyclic subspace of V. Then $m_{T|_W}(x) = c_{T|_W}(x)$

PYP.

- (2013/2014S1) Let A be an invertible $n \times n$ matrix. $c_{A^{-1}}(x) = x^n [c_A(0)]^{-1} c_A(1/x)$ and $m_{A^{-1}}(x) = x^k [m_A(0)]^{-1} m_A(1/x)$ where $k = deg(m_A(x))$
- (2018/2019S1) Let p(x) and q(x) be polynomials over \mathbb{F} s.t. gcd(p(x), q(x)) = 1, i.e. exist polynomials a(x), b(x) s.t. a(x)p(x) + b(x)q(x) = 1. For any nonzero $v \in Ker(p(T))$, then $q(T)(v) \neq 0$

11.6 Jordan Canonical Forms

Let T be a linear operator on a finite dimensional vector space V over \mathbb{F} where $\dim(V) \ge 1$.

Def 11.6.2 Let λ be a scalar. The **Jordan block** of order *t* associated with λ is a $t \times t$ matrix

$$J_t(\lambda) = egin{pmatrix} \lambda & 1 & 0 & \ \lambda & 1 & & \ & \ddots & \ddots & \ & 0 & & \ddots & 1 \ & & & & \lambda \end{pmatrix}$$

Lemma 11.6.3 Given a Jordan Block $J = J_t(\lambda)$, $c_J(x) = m_J(x) = (x - \lambda)^t$

Thm 11.6.4 Suppose $c_T(x)$ can be factorized into linear factors over \mathbb{F} , then there exists an ordered basis *B* for *V* s.t. $[T]_B = J$ with

$$J = egin{pmatrix} J_{t_1}(\lambda_1) & 0 & \ & J_{t_2}(\lambda_2) & & \ & & \ddots & \ & & & \ddots & \ & & 0 & & J_{t_m}(\lambda_m) \end{pmatrix}$$

where $\lambda_1, \lambda_2, \dots, \lambda_m$ are (not necessarily distinct) eigenvalues of T.

Remark 11.6.5. Let $A \in \mathcal{M}_{n \times n}(\mathbb{F})$. Suppose $c_A(x)$ can be factorized into linear factors over \mathbb{F} , applying Thm 11.6.4 to $T = L_A$ implies that we can find an invertible matrix $A \in \mathcal{M}_{n \times n}(\mathbb{F})$ s.t. $P^{-1}AP = J$

Def 11.6.6 For a linear operator *T* of finite dimensional vector space *V*, if \exists an ordered basis *B* s.t. $[T]_B = J$ (see 11.6.4), we say that *T* has a Jordan canonical form *J*.

Similarly, for a square matrix A, if there exists an invertible matrix P s.t. $P^{-1}AP = J$, we say that A has a Jordan canonical form J.

Remark 11.6.8. Jordan canonical forms is unique up to the ordering of the Jordan blocks.

Thm 11.6.9 Suppose a linear operator T of finite dimensional space V has a Jordan canonical form J (as seen in 11.6.4)

1. $c_T(x) = \prod_{i=1}^m (x-\lambda_i)^{t_i}$

- 2. $m_T(x)$ is the least common multiple of $\{(x \lambda_i)^{t_i} \mid i = 1, 2, \dots, m\}$
- 3. For every eigenvalue λ of T, dim $(E_{\lambda}(T))$ is the total number of Jordan blocks associated with λ in the matrix J.

12 Inner Product Spaces

In this chapter, we only focus on real and complex vector spaces.

Notation 12.1.2 Let A be a complex matrix. We use \overline{A} to denote the **conjugate** of A. Define the $A^* = \overline{A^T}$ as the **conjugate transpose** of A. Then

1. $(A + B)^* = A^* + B^*$ 2. $(AC)^* = C^*A^*$ 3. $(cA)^* = \overline{c}A^*$

Def 12.1.3 Let *V* be a vector space over \mathbb{F} . An **inner product** on *V* is a mapping which assigns to each ordered pair of vectors $u, v \in V$ a scalar $\langle u, v \rangle \in \mathbb{F}$ s.t. the following axioms are satisfied:

- 1. For all $u,v\in V$, $\langle u,v
 angle =\overline{\langle v,u
 angle}$
- 2. For all $u,v,w\in V$, $\langle u+v,w
 angle = \langle u,w
 angle + \langle v,w
 angle$
- 3. For all $c \in \mathbb{F}$ and $u, v \in V$, $\langle cu, v \rangle = c \langle u, v \rangle$ (we can derive that $\langle u, cv \rangle = \overline{c} \langle u, v \rangle$)
- 4. $\langle 0,0
 angle=0$ and for all nonzero $u\in V$, $\langle u,u
 angle>0.$ In particular $\langle 0,u
 angle=0$

Def 12.1.5 A vector space V equipped with an inner product is called an inner product space

- The usual inner product on \mathbb{C}^n is defined as uv^*
- Consider the vector space C([a, b]) the set of continuous function on the closed interval

[a,b], then an inner product on C([a,b]) is $\langle f,g
angle=rac{1}{b-a}\int\limits_a^b f(t)g(t)dt$

• Let V be the set of all real infinite sequences (a_n) s.t. $\sum_{n=1}^{\infty} a_n^2$ converges, then an inner

product is $\langle (a_n), (b_n)
angle = \sum\limits_{n=1}^\infty a_n b_n.$ This space is known as the l_2 -space

12.2 Norms and Distances

Def 12.2.2 Let V be an inner product space

1. For $u \in V$, the **norm** (or *length*) of u is defined to be $||u|| = \sqrt{\langle u, u \rangle}$ 2. For $u, v \in V$, the **distance** between u and v is d(u, v) = ||u - v||

Thm 12.2.4 Let V be an inner product space over \mathbb{F}

1. $\|0\|=0$, and for any nonzero $u\in V$, $\|u\|>0$

- 2. For any $c \in \mathbb{F}$ and $u \in V$, $\|cu\| = |c| \|u\|$
- 3. (Cauchy-Schwarz Ineq) For any $u, v \in V$, $|\langle u, v \rangle| \le ||u|| ||v||$
- 4. (Triangle Ineq) For any $u, v \in V$, $\|u + v\| \le \|u\| + \|v\|$

12.3 Orthogonal and Orthonormal Bases

Discussion 12.3.1. u and V are perpendicular to each other iff $\langle u, v \rangle = 0$.

Def 12.3.2 Let V be an inner product space

- 1. 2 vectors $u, v \in V$ are **orthogonal** to each other if $\langle u, v
 angle = 0$
- 2. Let W be a subspace of V. A vector u is **orthogonal** (or perpendicular) to W if u is orthogonal to all vectors in W.
- 3. A subset *B* of *V* is **orthogonal** if the vectors in *B* are pairwise orthogonal.
- 4. A subset B of V is orthonormal if B is orthogonal and all vectors in B are unit vectors

Lemma 12.3.3 Let V be an inner product space over \mathbb{F}

- 1. Let W = span(B) where $B \subseteq V$. For $u \in V$, u is orthogonal to W iff u is orthogonal to every vectors in B.
- 2. If *B* is an orthogonal set of nonzero vectors from *V*, then *B* is always linearly independent
- 3. Suppose V is finite dimensional where $\dim(V) \ge 1$. Let B be an ordered orthonormal basis for V. Then $\langle u, v \rangle = (u)_B ((v)_B)^* = ([u]_B)^T \overline{[v]}_B$

Note: if $\mathbb{F}=\mathbb{R}$, then $\langle u,v
angle=(u)_B\cdot(v)_B$

Remark 12.3.4

- 1. Suppose V is a finite dimensional inner product space. To determine whether a set B of nonzero vectors from V is an orthogonal (orthonormal) basis for V, we only need to check that (1) B is orthogonal (orthonormal) and (2) $|B| = \dim(V)$
- 2. By Lemma 12.3.3.3, a finite dimensional real inner product space is essentially the same as the Euclidean space

Thm 12.3.6 Let *V* be a finite dimensional inner product space. If $B = \{w_1, w_2, \dots, w_n\}$ is an orthonormal basis for *V*, then for any vector $u \in V$, $u = \langle u, w_1 \rangle w_1 + \langle u, w_2 \rangle w_2 + \dots + \langle u, w_n \rangle w_n$.

Thm 12.3.7 (Gram-Schmidt Process). Suppose $\{u_1, u_2, \ldots, u_n\}$ is a basis for a finite dimensional inner product space V. Let

$$egin{array}{rcl} v_1&=u_1\ v_2&=u_2-rac{\langle u_2,v_1
angle}{\langle v_1,v_1
angle}v_1\ dots\ v_n&=u_n-rac{\langle u_n,v_1
angle}{\langle v_1,v_1
angle}v_1-rac{\langle u_n,v_2
angle}{\langle v_2,v_2
angle}v_2-\dots-rac{\langle u_n,v_{n-1}
angle}{\langle v_{n-1},v_{n-1}
angle}v_{n-1} \end{array}$$

Then $\{v_1, v_2, \ldots, v_n\}$ is an orthogonal basis for V.

12.4 Orthogonal Complements & Projections

Let V be an inner product space and W a subspace of V.

Def 12.4.1 The **orthogonal complement** of *W* is defined to be the set $W^{\perp} = \{v \in V \mid \langle v, u \rangle = 0 \ \forall u \in W\} \subseteq V$

Thm 12.4.3

- 1. W^{\perp} is a subspace of V
- 2. $W \cap W^{\perp} = \{0\}$, i.e. $W + W^{\perp}$ is a direct sum
- 3. If W is finite dimensional, then $V = W \oplus W^{\perp}$
- 4. If V is finite dimensional, then dim(V) = dim(W) + dim(W^{\perp})

Thm 12.4.6

1. $W \subseteq (W^{\perp})^{\perp}$.

2. If W is finite dimensional, then $W = (W^{\perp})^{\perp}$

Def 12.4.8 Suppose $V = W \oplus W^{\perp}$, i.e. every $u \in V$ can be uniquely expressed as u = w + w' where $w \in W$ and $w' \in W^{\perp}$. The vector w is called the **orthogonal projection** of u onto W and is denoted by $\operatorname{Proj}_{W}(u)$

Prop 12.4.9. The mapping $\operatorname{Proj}_W : V \to V$ is a linear operator and is called the orthogonal projection of V onto W.

Thm 12.4.11 Let W be finite dimensional. If $B = \{w_1, w_2, \dots, w_k\}$ is an orthonormal basis for W, then for any vector $u \in V$, $\operatorname{Proj}_W(u) = \langle u, w_1 \rangle w_1 + \langle u, w_2 \rangle w_2 + \dots + \langle u, w_k \rangle w_k$ and $\operatorname{Proj}_{W^{\perp}}(u) = u - \operatorname{Proj}_W(u)$

Thm 12.4.13 (Best Approximation) Suppose $V = W \oplus W^{\perp}$. Then for any $u \in V$, $d(u, \operatorname{Proj}_W(u)) \leq d(u, w)$ for all $w \in W$, i.e. $\operatorname{Proj}_W(u)$ is the best approximation of u in W.

12.5 Adjoints of Linear Operators

Let V be an inner product space over \mathbb{F} and let T be a linear operator on V

Def 12.5.1 A linear operator T^* is called the **adjoint** of T if $\langle T(u), v \rangle = \langle u, T^*(v) \rangle$ for all $u, v \in V$

Note:

- 1. the classical adjoint of a matrix is a completely different concept.
- 2. I_V , 0_V and L_A are its own adjoint.
- 3. We can derive that $\langle u,T(v)
 angle=\langle T^*(u),v
 angle$

Thm 12.5.4

- 1. The adjoint of T is unique if it exists
- 2. Suppose V is finite dimensional where $\dim(V) \ge 1$
 - 1. T^* always exists
 - 2. If B is an ordered orthonormal basis for V, then $[T^*]_B = ([T]_B)^*$
 - 3. rank(T) = rank(T^*) and nullity(T) = nullity(T^*)

Prop 12.5.7 Let $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . Suppose *S* and *T* are linear operators on *V* s.t. *S*^{*} and *T*^{*} exists. Then

1.
$$(S+T)^* = S^* + T^*$$

2. for any $c \in \mathbb{F}$, $(cT)^* = \bar{c}T^*$
3. $(S \circ T)^* = T^* \circ S^*$
4. $(T^*)^* = T$

5. if W is a subspace of V that is both T- and T*- invariant, then $(T|_W)^* = T^*|_W$.

Def 12.5.8 Let $\mathbb{F} = \mathbb{R}$ or \mathbb{C} .

- 1. Suppose T^* exists, T is invertible and $T^{-1} = T^*$, i.e. $T \circ T^* = T^* \circ T = I_V$
 - 1. If $\mathbb{F} = \mathbb{C}$, then T is called a **unitary operator**
 - 2. If $\mathbb{F} = \mathbb{R}$, then T is called a **orthogonal operator**
- 2. Let A be an invertible matrix over $\mathbb F$ s.t. $A^{-1} = A^*$, i.e. $AA^* = A^*A = I$
 - 1. If $\mathbb{F} = \mathbb{C}$, then A is called a **unitary matrix**

2. If $\mathbb{F} = \mathbb{R}$, then A is called a **orthogonal matrix** (only real square matrices)

An orthogonal matrix is also a unitary matrix.

Prop 12.5.9 Let *V* be finite dimensional where $\dim(V) \ge 1$. Take any ordered orthonormal basis *B* for *V*. If $\mathbb{F} = \mathbb{C}$ (or \mathbb{R}), then *T* is unitary (orthogonal) iff $[T]_B$ is a unitary (orthogonal) matrix

Thm 12.5.11 Let V be finite dimensional where $dim(V) \ge 1$. The following are equivalent

- 1. T is unitary (when $\mathbb{F} = \mathbb{C}$) or orthogonal (when $\mathbb{F} = \mathbb{R}$)
- 2. For all $u,v\in V$, $\langle T(u),T(v)
 angle = \langle u,v
 angle$
- 3. For all $u \in V$, $\|T(u)\| = \|u\|$
- 4. There exists an orthonormal basis $\{w_1, w_2, \dots, w_n\}$ for V, where $n = \dim(V)$ s.t. $\{T(w_1), T(w_2), \dots, T(w_n)\}$ is also orthonormal.

Thm 12.5.14 Let A be an $n \times n$ complex matrix. Suppose \mathbb{C}^n is equipped with the usual inner product. The following statements are equivalent

- 1. A is unitary
- 2. The rows of A form an orthonormal basis for \mathbb{C}^n
- 3. The columns of A form an orthonormal basis for \mathbb{C}^n

Thm 12.5.15 Let *V* be a complex finite dimensional inner product space where $\dim(V) \ge 1$. If *B* and *C* are ordered orthonormal bases for *V*, then the transition matrix from *B* to *C* is a unitary matrix, i.e. $[I_V]_{B,C} = ([I_V]_{C,B})^{-1} = ([I_V]_{C,B})^*$.

ΡΥΡ

- (2012/2013 S2).
 - $\operatorname{Ker}(T^* \circ T) = \operatorname{Ker}(T)$
 - Given b ∈ V, then x = u is a solution to (T* ∘ T) = T*(b) iff T(u) is the orthogonal projection of b onto R(T).

12.6 Unitary and Orthogonal Diagonalization

Let V an inner product space over $\mathbb F$ and let T be a linear operator on V

Def 12.6.1 Suppose T^* exists.

- 1. T is called a self-adjoint operator if $T = T^*$
- 2. T is called a **normal operator** if $T \circ T^* = T^* \circ T$

Let A be a complex square matrix.

- 1. A is called a **Hermitian matrix** if $A = A^*$
- 2. A is called a **normal matrix** if $AA^* = A^*A$

Remark:

- Normal operator is similar to unitary/orthogonal operator except that it doesnt need to be identity matrix)
- Self-adjoint operator / Hermitian matrix is equal to symmetric matrices under ${\mathbb R}$
- All self-adjoint operators, orthogonal operators and unitary operators are normal.
- All Hermitian matrices, real symmetric matrices, unitary matrices and orthogonal matrices are normal.

Prop 12.6.2 Let *V* be finite dimensional with $\dim(V) \ge 1$. Take an ordered orthonormal basis *B* for *V* and let $A = [T]_B$.

- 1. If $\mathbb{F} = \mathbb{C}$ (or \mathbb{R}), then *T* is self-adjoint iff *A* is a Hermitian (symmetric) matrix.
- 2. T is normal iff A is a normal matrix

Lemma 12.6.4 Suppose $\mathbb{F} = \mathbb{R}$ or \mathbb{C} and T a normal operator on V.

- 1. For all $u,v\in V$, $\langle T(u),T(v)
 angle = \langle T^*(u),T^*(v)
 angle$
- 2. For any $c \in \mathbb{F}$, the linear operator $T cI_V$ is normal
- 3. If u is an eigenvector of T associated with λ , then u is an eigenvector of T^* associated with $\bar{\lambda}$
- 4. If u and v are eigenvector of T associated with λ and μ , respectively, where $\lambda \neq \mu$, then u and v are orthogonal.

Remark 12.6.5. Lemma 12.6.4 holds if we replace V with \mathbb{C}^n (equipped with the usual inner product) and T by an $n \times n$ normal matrix A.

Def 12.6.7 Suppose $\mathbb{F}=\mathbb{C}$ (or $\mathbb{R}).$

- 1. Suppose there exists an ordered orthonormal basis B for V s.t. $[T]_B$ is a diagonal matrix, then T is called **unitarily (orthogonally) diagonalizable**
- 2. A complex (real) square matrix A is called **unitarily (orthogonally) diagonalizable** if there exists a unitary (orthogonal) matrix P s.t. P^*AP is a diagonal matrix.

Thm 12.6.9 && Thm 12.6.12

- 1. Let V be a complex (real) finite dimensional inner product space where $\dim(V) \ge 1$. A linear operator T on V is unitarily (orthogonally) diagonalizable if and only if T is normal (self-adjoint).
- 2. A complex (real) square matrix A is unitarily (orthogonally) diagonalizable if and only if A is normal (symmetric).

To find an ordered orthonormal basis B so that the matrix $[T]_B$ is a diagonal matrix, we just union the bases of all eigenspaces of $[T]_C$ where C is any orthonormal basis for V and normalize each bases.

Tut 10 Q5.

- *T* is self-adjoint iff all its eigenvalues are real.
- A linear operator *P* is **positive definite** if *P* is self-adjoint and ⟨*P*(*u*), *u*⟩ > 0. *P* is positive definite iff all its eigenvalues are (nonzero) positive real numbers.

PYP 2018/2019S1.

• If T is an invertible linear operator, then $T^* \circ T$ is unitarily diagonalizable and all its eigenvalues are nonzero real positive numbers.