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General Vector Spaces

8.1 Fields

Def 8.1.2 A field consists of

1.anonempty setF
2. an operation of addition a + b for all a,b € F
3. an operation of multiplication ab for all a,b € F

Axioms:

. Closure under addition

. Commutative Law for addition

. Associative Law for addition

. Existence of the Additive Identity 0

. Existence of Additive Inverse

. Closure under multiplication

. Commutative Law for multiplication
. Associative Law for multiplication

. Existence of Multiplicative ldentity 1
. Existence of Multiplicative Inverse a~!
. Distributive Law
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Prop 8.1.5 Additional properties of field

. Uniqueness of Additive Identity

. Uniqueness of Additive Inverse

. Uniqueness of Multiplicative Identity

. Uniqueness of Multiplicative Inverse
.Foranya eTF,a0=0and (—1)a = —a
.Foranya,b e F,ifab=0,thena=0o0rb=0.
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Prop 8.1.11 Define the trace of A4, denoted ¢r(A), as the sum of the entries on the diagonal of
A.

1.1f Aand B are n x n matrix over F, then tr(A + B) = tr(A) + tr(B)
2.Ifc € Fand A is an n x n matrix over I, then tr(cA) = c- tr(A)
3.If C and D are m x n and n x m matrices, respectively over F, then tr(CD) = tr(DC)

8.2 Vector Spaces

Def 8.2.2. A vector space consists of

1. afield F, where the elements are called scalars

2. anonempty set V, where the elements are called vectors
3. an operation of vector addition u + v for all u,v € V

4. an operation of scalar multiplication cu forallce F,u € V
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Axioms:

. Closure under VA

. Commutative Law for VA

. Associative Law for VA

. Existence of the Zero Vector

. Existence of Additive Inverse

. Closure under SM

.Forallb,ce Fand u € V, b(cu) = (bc)u

LForallueV,lu=u

. (Distributive Law I) For all c e F and w,v € V, c(u + v) = cu + cv
. (Distributive Law Il) For all b,c e Fand u € V, (b + ¢)u = bu + cu
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Prop 8.2.4 Additional properties of a vector space

1. Uniqueness of the Zero Vector

2. Uniqueness of the Additive Inverse
3.ForallueV,0u=0and (—1)u=—u
4.ForallceF,c0=0

5.fcu =0whereceFandu c V,thenc=00ru=0.

8.3 Subspaces

Def 8.3.2 A subset W of a vector space V is called a subspace of V if W is itself a vector
space using the same VAand SM as in V.

Note: {0} and V are called trivial subspaces of V. Other subspaces are called proper
subspaces of V.

Thm 8.3.4 A subset W of V' is a subspace of V only if it satisfies property 4, 1, 6 of Def 8.2.2

Remark 8.3.5. A nonempty subset W of V is a subspace of V iff for all a,b € F and u,v € W,
thenau+bve W

Thm 8.3.8 The intersection of 2 subspaces is a subspace.

Note: The union of two subspaces might not be a vector space, e.g. W1 = {(z,0) | z € F} and
W2 ={(0,y) | y € F}

Def 8.3.11 Let W; and W> be subspaces of a vector space V. The sum of W; and W5 is
defined to be the set W; + Wy = {w1 =+ waq | w1 € Wi, wse € WQ}

Thm 8.3.12 The sum of subspaces is a subspace.

Remark 8.3.14 Let W; and W5, be subspaces of a vector space V. Then W; + W5 is the
smallest subspace of V that contains both W; and Ws.

Tut 1. Let Wy and W5 be subspaces of a vector space V, then W; U Ws is a subspace of V iff
W1 C Wy or Wy C W3

8.4 Linear Spans and Linear Independence



Let V be a vector space over a field F and B be a nonempty subset of V

Def 8.4.2 Let vy, vs,...,v, € V. For any scalars cy, ca, . .. cn, the vector civy + covy + ... cyvp, IS
called a linear combination of v, vs,...,v,. (Note: m is finite)

Thm 8.4.3 The set W of all linear combinations of (finite) vectors taken from B is a subspace
of V

Def 8.4.4 The subspace W in Thm 8.4.3 is called the subspace of V spanned by B and we
write W = spanp(B). We also say W is a linear span of B and B spans W. Note that BC W

Def 8.4.8
1.Letwvy,vs,...,vx € V. The vectors are linearly independent if the vector equation
c1v1 + cavs + ... cxvr = 0 has only the trivial solutionc; =co=---=cx =0

2. Bis linearly independent if for every finite subset {vy,vs,...,vr} of B, v1,va,...,v; are
linearly independent.

Remark 8.4.9 Linear independence is used to determine whether there are redundant
vectors in a set.

8.5 Bases and Dimensions

Def 8.5.1 A subset B of a vector space V is called a basis for V if Bis lin. ind. and B spans V

A vector space V is called finite dimensional if it has a basis consisting of finitely many
vectors; otherwise, V is called infinite dimensional

Remark 8.5.2

1. For convenience, the empty set () is defined as the basis for a zero space
2. Every vector space has a basis. Proof by Zorn's Lemma

Lemma 8.5.5 Let V be a finite dimensional vector space and B = {v1,vs,...,v,} a basis for V
. Any vector u € V can then be expressed uniquely as a linear combination of vectors in B.

Def 8.5.6 Let V be a finite dimensional vector space over a field F where V is not a zero
space

1. A basis B = {v1,vs,...,v,} for Vis called an ordered basis if the vectors in B have a fixed
order s.t. vy is the first vector, v; is the second vector etc.

2. Let B = {v1,v2,...,v,} be an ordered basis for Vand letu € V. If u = civ1 + cova + ... cpvp
for c1,ca,...,c, € F then the coefficients ¢, cs,. .., c, are called the coordinates of «
relative to the basis B. In particular the vector (u)p = (c1,¢2,...,¢n) OF
[ulg = (c1,¢2,...,¢,)T in F7 is called the coordinate vector of u relative to the basis B.

Lemma 8.5.7 Let V be a finite dimensional vector space over afield F where V is not a zero
space and let B be its ordered basis.

1.Foranyu,v e V,u=viff (u)p = (v)s
2. For any vy,vs,...v, € Vandey,cs,...c, €T,

(c1v1 + cova + - - cvr)B = c1(vi) B+ c2(v2)B + - - - (V) B



Thm 8.5.10 Let V be a vector space with a basis of n vectors. Then

1. any subset of V with more than n vectors is always linearly dependent
2. any subset of V with less than n vectors cannot span V.

Def 8.5.11 The dimension of a finite dimensional vector space V over a field F denoted by
dimyp (V) is defined to be the number of vectors in a basis for V. In addition, we define the
dimension of a zero space to be 0.

Thm 8.5.13 Let V be a finite dimensional vector space and B a subset of V. The following
are equivalent:

1. Bis a basis for V
2. Bis linearly independent and |B| = dim(V)
3. Bspans V and |B| = dim(V)

Thm 8.5.15 Let W be a subspace of a finite dimensional vector space V. Then

1. dim(W) < dim(V)
2.if dim(W) = dim(V), then W = V.

Remark:

1. Row equivalent matrices have the same rowspace but may not have the same column
space

2. Let A be a matrix and R a row-echelon form of A. A basis for the column space of A can
be obtained by taking the columns of A that correspond to the pivot columns in R. A basis
for the rowspace of A can be obtained by taking the set of nonzero rows in R (or the
corresponding rows in A).

Thm 8.5.17 Let V be a finite dimensional vector space. Suppose C'is a linearly independent
subset of V. Then there exists a basis B for V s.t. C C B.

To extend a basis, put the current basis in rows, do Gaussian elimination, and add (e;) if
column 7 is not a pivot column.

Tut 2. Let W7 and W5, be finite dimensional subspaces of a vector space.

1. Let By, B, be basis for Wi, W, respectively. Then span(B; U By) = Wi + W,
2. dim(Wl + Wz) = dim(Wl) + dim(Wz) — dim(W1 N WQ)

8.6 Direct Sums of Subspaces

Let W7 and W5 be subspaces of a vector space V.

Def 8.6.3 We say that the subspace W; & W is a direct sum of W; and W, if every vector
u € W1 + W, can be expressed uniquely as v = w; + w, where w; € Wi and ws € W,

Theorem 8.6.5 W, + W, is a direct sum iff Wy, N W, = {0}

Tut1 Q4. Wy + W, is the smallest subspace of V that contains both W; and W.



Tut1 Q5. W1 U W, is a subspace of V iff Wy C Wy or Wo C Wy
Theorem 8.6.7 Suppose W; + W, is a direct sum.

1.If By and B, are bases for W; and W, respectively, then B; U Bs is a basis for W; @ W,
2. If both W7 and W5 are finite dimensional, then dim(W; @ Ws) = dim(W;) + dim(W5)

Remark 8.6.8 Even if W; + W5 is not a direct sum, it is still true that span(B; U Bs) = W1 + Wo.

Def 8.6.9 We can generalize the definition of sum and direct sum to k£ subspaces of V.
Wi+ ---+ Wy is adirect sum iff Wy N Wy = {0}, (W1 + Wa) N W3 = {0},..., etc

8.7 Cosets and Quotient Spaces

Let W be a subspace of a vector space V.

Def8.71Foruc V,theset W+ u={w+u| w e W}is called the coset of W containing u

Thm 8.7.3

1. For any v,w € V, the following are equivalent:
Tl.veW+w
2.weW+w
.v—weW
A4 Wr+ov=W+uw
2.Forany v,w € V, either W +v=W +wor (W +v) N (W +w) =0

Lemma 8.7.5

1. Suppose uy, us,v1,v2 € VSt W+wu =W +uyand W+ vy = W 4 vy. Then

W+ (ur +v1) = W+ (uz + v2)
2.Suppose uj,u2 E VSt WHu =W +us. Then W+ cu; =W +cup forallce F

Def 8.7.6

1. We define the addition of two cosets by (W +u) + (W +v) =W + (u +v) for u,v e V.
2. We define the scalar multiplication of a coset by ¢(W +u) =W +cuforce Fandu € V.

Thm 8.7.8 Denote the set of all cosets of WinVbyV/W={W+u|ueV}.ThenV/Wisa
vector space over I using the addition and scalar multiplication defined in Def 8.7.6

Its zero vector is W(= W + 0).
Def 8.7.9 The vector space V/W is called the quotient space of V modulo W
Thm 8.7.11 Let {w;, ws, ..., w,} be a basis for W.

1. For vy, va,...,vr € V, {v1,v2,...,0k, w1, ws,...,wy} is a basis for V iff
{W +v1, W +v,,..., W+ } is a basis for V/W
2.dim(V/W) = dim(V) - dim(W)

9 General Linear Transformations



9.1 Linear Transformations

Let V and W be vector spaces over the same field F.
Def 9.1.2 A linear transformation T : V — W is a mapping from V to W s.t.

1.Forallu,v eV, T(u+v) =T(u) + T(v)
2. Forallce Fandu €V, T(cu) = cT'(u).

If W =V, the linear transformation T : V. — V is called a linear operator on V
If W =T, the linear transformation T': V. — F is called a linear functional on V

Remark 9.1.3 Amapping T : V. — W is alinear transformation iff T'(au + bv) = aT'(u) + bT'(v) for
all a,b e Fand u,v e V.

Prop9.1.5If T:V — W is alinear transformation, then 7'(0) = 0.
Remark 9.1.6 Suppose V has a basis B and let T be a linear transformation.

e Tis completely determined by the images of vectors from B, i.e. T(u) is completely
determined by T'(v1),...T(vm) fOr vi,...,v,m € V

e We can define alinear transformation S : V' — W by using the basis B, i.e. setting the
value of S(v) for allv € B

9.2 Matrices for Linear Transformations

* [u]p denotes column coordinate vector relative to B. (u) p denotes row coordinate vector
relative to B.

e LetT:V — W be alinear transformation where V and W are finite dimensional vector
spaces over afield F s.t. n = dim(V) > 1 and m = dim(W) > 1.

e Band C are ordered bases for V and W respectively

Thm9.21LetT: V — W be alinear transformation. For any ordered bases B and C for V
and W respectively, there exists an dim(W) x dim(V) matrix A s.t. [T(u)]c = Alu|p for all
uevV

Def 9.2.2. Let B = {v1,v2,...,v,}. The matrix A = ([T(v1)]le¢ [T(v2)]e --- [T(va)]c) is called
the matrix for T relative to the ordered bases B and C. This matrix A is usually denoted by
[Tle,B-

Note that [T'(u)]¢ = [T)¢,Blu|s forallu e V

If W =V and C = B, we simply denote [Tz s by [T]p and called it the matrix for T relative to
the ordered basis B.

Lemma9.2.3 Let T} and T, be a linear transformation. For any B and C, we have T} = T iff
[T1]c,s = [T2]o,B

Thm 9.2.6 Suppose Iy : V — V. Suppose B and C are two ordered bases for V. For any
u € V, the matrix [Iv]c,s

e converts [U]B to [u]c, i.e. [u]c = [Iv(u)]c = [IV]C,B[U]B-



e js called the transition matrix from B to C.
* isinvertible, and its inverse is the transition matrix from C to B, i.e. [Iv]pc

9.3 Compositions of Linear Transformations

LetS: U — VandT:V — W be linear transformations. Suppose U, V, W are finite
dimensional where dim(U), dim(V), dim(W) > 1.

Thm 9.3.1 Then the composition mapping T o S : U — W, defined by (T o S)(u) = T(S(u)) for
u € U is also a linear transformation.

Thm 9.3.3 Let A, B, C be ordered bases for U, V, W respectively. Then
[T o Sle,a = [T]e,8S]B,a

Def 9.3.5 Let T be a linear operator. For any nonnegative integer m, define

I, if m=0
T"=4ToTo---0oT if m>1
—_—

m times

Corollary 9.3.6 Let T be a linear operator. Let B be an ordered basis. Then [T"|g = ([T]5)™

Lemma 9.3.8 Let T be alinear operator. Let B, C are two ordered bases for V and P the
transition matrix from Bto C, i.e. P = [Iy]cp. Then [T]g = P7[T]cP

Def 9.3.9 Let F be afield and A, B € M,,.,(F). Bis said to be similar to A if there exists an
invertible matrix P € M, «,(F) s.t. B= P 'AP

Thm 9.3.10 Let T be a linear operator on V and let C be an ordered basis for V. Then an
n x n matrix D over F is similar to [T]¢ iff there exists an ordered basis B for V s.t. D = [T.

9.4 The Vector Space L(V, W)

Let V and W be vector spaces over the same field F. Suppose V, W are finite dimensional
where dim(V),dim(W) > 1 with B and C be ordered basis for V and W respectively.

Def 9.4.1

1.LetTy,T> : V — W be linear transformations. We define a mapping Ty + T»> : V. — W by
(Th + T2)(u) = Th(u) + Tao(u) foru e V.

2.LetT :V — W be alinear transformation and ¢ € F We define a mapping ¢T': V — W by
(cT)(u) = cT'(u) foru e V.

Both mappings Ty + T» and T are linear transformations.
Prop 9.4.3

1.1f T4, T> : V. — W are linear transformations, then [T + Tx]c.s = [Th]c,5 + [T2]c,B
2.1fT:V — W be alinear transformation and c € F, then [¢T|¢.s = ¢[T]c.B

Remark 9.4.4: Matrices and linear transformations have a lot of similarities. The observations
above show their relations in addition and scalar multiplication.



e Thm 9.3.3 shows that the composition of linear transformations is equivalent to matrix
multiplication.
e Thm 9.6.6 shows a corresponding analog of matrix inverse in linear transformations.

Thm 9.4.5 Let L(V, W) be the set of all linear transformations from V to W. Then L(V,W) is
a vector space over F with addition and scalar multiplication defined in Def 9.4.1.

Furthermore, if V and W are finite dimensional, then dim(L(V, W)) = dim(V) dim(W)
Def 9.4.6 The vector space L(V,F) is called the dual space of V and is denoted by V*

By Thm 9.4.5. dim(V*) = dim(V)

9.5 Kernels and Ranges

LetT : V — W be alinear transformation.
Def 9.5.1

1. The subset Ker(T) = {u € V| T(u) = 0} of V is called the kernel of T. Ker(T) is also known
as the nullspace of T' and denoted by N(T)
2. The subset R(T) = {T'(u) | u € V} of W is called the range of T

Thm 9.5.2 Ker(T) is a subspace of V', and R(T) is a subspace of W.
Def9.5.4

1. If Ker(T) is finite dimensional, then dim(Ker(T)) is called the nullity of T and is denoted by
nullity(T)

2. If R(T) is finite dimensional, then dim(R(T)) is called the rank of T and is denoted by
rank(T)

Lemma 9.5.6 Suppose V and W are finite dimensional with dim(V) > 1 and dim(W) > 1. For
any ordered bases B and C for V and W respectively

1. {[u]s | u € Ker(T)} is the nullspace of [T]¢,s and nullity(T) = nullity([T]¢,s)
2. {[u]c | v € R(T)} is the column space of [T]¢ g and rank(T) = rank([T]¢,s)

Thm 9.5.7 (Dimension Theorem for Linear Transformations). Let T : V — W where V and W
are finite dimensional. Then, rank(T) + nullity(T) = dim(V)

Thm 9.5.9 Suppose B and C are subsets of V s.t. Bis a basis for Ker(T) and {T'(v) | v € C} is
a basis for R(T) and for any v,v' € Cif v # ¢/, then T(v) # T(v'). Then BU C'is a basis for V.

Def 9.5.11 Let f : A — B be a mapping.

1. f is injective or one-to-one if Vz € B, there exists atmostone z € A s.t. f(z) = =.
2. f is surjective or onto if Vz € B, there exists atleast one z € A s.t. f(z) = 2.
3. fis bijective if itis both injective and surjective.

Prop 9.5.12

1. T is injective iff Ker(T) = {0} iff nullity(T) = 0



2. T is surjective iff R(T) = W.
Note:

1.LetS: U — Vand T :V — W be linear transformations. Ker(S) C Ker(T o S) and
R(T o S) C R(T)

2. Let S,T:V — W be linear transformations. Then R(S + T') C R(S) + R(T) and
Ker(S)N Ker(T) C Ker(S+T)

9.6 Isomorphism

LetT : V — W be alinear transformation.

Def 9.6.1 The linear transformation T': V — W is called an isomorphism from V onto W if T
is bijective.

Def 9.6.3 A mapping T : V — W is bijective iff there exists amapping S: W — V s.t.

SoT =1Iyand T o S = Iw where Iy and Iy are identity operators on V and W respectively.
The mapping S is known as the inverse of T and is denoted by T—!. Thus a bijective mapping
is also called an invertible mapping

Thm 9.6.4 If T is an isomorphism, then T-! is a linear transformation and hence is also an
isomorphism.

Thm 9.6.6 Suppose V and W are finite dimensional with dim(V) = dim(W) > 1. Let Band C
be ordered bases for V and W respectively.

1. T is an isomorphism iff [T|¢ g is an invertible matrix
2.1f T'is an isomorphism, [T !|gc = ([T)c,B) *

Thm9.6.8letS: W - VandT:V — W be linear transformations s.t. T o S = Iy.

1. Sis injective and T is surjective.
2. If V .and W are finite dimensional and dim(V) = dim(W), then S and T are isomorphisms,
S l=TandT !=8.

Def 9.6.10 Let V and W be vector spaces over afield F. If there exists an isomorphism from
V onto W, then V is said to be isomorphic to W and we write V =~y W or simply V = W.

Thm 9.6.13 Let vV and W be finite dimensional vector spaces over the same field. Then V' is
isomorphic to W iff dim(V) = dim(W)

Example: M, (F) 22p F™, P, (F) =g F*HL, C" 22 R?"

Thm 9.6.15 (The First Isomorphism Theorem). Let T : V — W be a linear transformation.
Then V/Ker(T) = R(T)

10 Multilinear Forms and Determinants

10.1 Permutations



Def 10.1.2 A permutation o of {1,2,...,n} is a bijective mapping from {1,2,...,n} to
2 e n

o(1) o(2) ... o(n)
of {1,2,...,n} is denoted by S,,. Note that |S,,| = n!

{1,2,...,n}. We usually represent o by ( ) The set of all permutations

Notation 10.1.4

1.Foro,7 € S,, or = coris also a permutation.
2.Fora,B€{1,2,...,n}, let ¢, 3 denote the permutation of {1,2,...,n} s.t.

k ifk+#a,p
baplk) = a ifk=a
B ifk=p

This permutation is called the transposition of a and 8. Note that ¢, 3 = ¢, and
¢;jg = ¢a,ﬁ

Lemma10.1.6

1.{o7 o€ Sp} =S,
2.Foranyrc S, {ro|occS,}={or|ocS,}=25,

Lemma 10.1.7 For every o € S, there exists aj,as,...ar € {1,2,...,n} S.t.

0 = Oa;,a;+10 ay,05+1 " * Oap,op+1

Def10.1.9 Let o € S,,. An inversion occurs in ¢ if (i) > o(j) for i < j. If the total number of
inversions in o is even, o is called an even permutation; otherwise ¢ is an odd permutation.

The sign (or parity) of o, denoted as sgn(o) is defined to be 1if o is even and -1if o is odd.
Thm10.1.11 For any o, 7 € S,,, sgn(or) = sgn(o)sgn(r). Moreover, sgn(¢.3) = —1
Corollary 10.1.12

1.1f o € S, is a product of k transpositions, then sgn(o) = (—1)*

2. A permutation is even (respectively, odd) if it is a product of even (respectively, odd)
number of transpositions.

3.Forany o € S,,sgn(c ') = sgn(o)

10.2 Multilinear Forms

Def10.2.1 Let V be a vector space over a field F. Amapping T : V" — F is called a
multilinear form on V if for each i,1 <i < n,
T(uty ... ui—1,a0 +bw, Uit1, ... Up) = aT(Uty e o  Uim1, Uy Uit1y e ey Up) + T (U, e o Ui 1, Wy Uit 1y - v ey Upy)

foralla,bc Fand ui,...ui 1,Uit1,...,Up, v, w €V

A multilinear form T on V is called alternative if T'(u1, us,...u,) = 0 Whenever u, = ug for
some a # 3

Define P : My.n(F) — I by

P(A) =) a1)1862)2" " Co(n)n

S



for A = (aij) € Muxn(F). The value P(A) is known as the permanent of A.

Thm10.2.3 Let T : V™ — F be an alternative multilinear form on a vector space V. Then for
allo e S, and uy,us,...,u, € V, we have T(ul,ug, . ,un) = Sgn(a) . T(ug(l),ua(m, . ,ug(n))

Remark10.2.4 Let T : V™ — T be a multilinear form on a finite dimensional vector space V

over afield F. Fix a basis {vy,v,,...,v,,} for V. Take any uy,u,,...u, € V, let
Uy =  a11V1 +a1v2 + -+ AmiVn,
U2 =  a12U1 + a2v2 + -+ amatn
Up = QAlpUp +a2,V2 + -+ + QGmnUm

Where A11,A19y -+ 5 Amn € F

1. Let F be the set of all mapping from {1,2,...n} t0 {1,2,...,m}. We have

T(ut,uz, .- un) = Y ap)1a52)2 afm)n T(050),V52); - - Vi)
feFr

2. Suppose T is an alternative form.
1.1f m < n, then T is a zero mapping.
2. 1f m > n, then (10.3) still holds if we change the set F to the set of all injective mapping.
In particular, when m = n we have

T(ug,ugy--yup) = 3 Sgn(a)%(l),laa@)g “Qo(n)n T(vy,v2,---,0y,)
€Sy

10.3 Determinants

Def 10.3.1 A mapping D : M,.,(F) — F is called a determinant function on M, (F) if it
satisfies the following axioms:

1. By regarding the columns of matrices in M,,.,(FF) as vectors in F*, D is a multilinear form
on F~.
2. D(A) =0if A € M,«,»(F) has two identical columns, i.e. as a multilinear form on F*, D is

alternative.
3.D(I,)=1

Theorem 10.3.2 There exists one and only one determinant function on M,,.,,(F) and it is
the function det : M,,.,(F) — F defined by

det(A) = Z Sgn(a)aa(l),lao'(2),2 *tQg(n)n

O'ESn

for A = (aij) € Mnxn(F). This formula is known as the classical definition of determinants.
Lemma10.3.4 Let A € M., (F). Then det(A) = det(AT)

Thm 10.3.5 (Cofactor expansions). Let A = (a;;) € M,,,(F). Define A}j to be the
(n — 1) x (n — 1) matrix obtained from A by deleting the ith row and the jth column. Then for
anya=1,2,...,nand 8 =1,2,...,n,

det(A) = aa1dal + aa2A02 + - + Ganlan
= a18d1p + apdag + - -+ + angAng



where A;; = (—1)"7 det(4,;).
11 Diagonalization and Jordan Canonical Forms

111 Eigenvalues and Diagonalization

Let T be a linear operator on a finite dimensional vector space V with dim(V) > 1.

Def 11.1.2 Let V be a vector space. A nonzero vector v € V is called an eigenvector of T if
T(u) = Mu for some scalar eigenvalue .

Def 11.1.4 det(T) is the determinant of the matrix [T] where B is any ordered basis for V.
Remark 11.1.5 The determinant of T' is independent of the choice of basis B.

Thm 11.1.6 For a scalar A, let A\I;, — T be the linear operator defined by
(AMly — T)(u) = Au — T(u) for some u € V

1. Xis an eigenvalue of T iff det(\I, — T')) = 0. (X is a solution to the charateristic polynomial
of T)

2.u € Vis an eigenvector of T associated with X iff u is a nonzero vector in the eigenspace
Ker(T — A\y)

Notation 11.1.7

1. Denote the characteristic polynomial of T', cy(z) = det(zIyy — T')
2. Denote the eigenspace of A associated with X as E,(A)

Remark 11.1.8 For a basis B of V, we have cy(z) = c(7,(z), @ monic polynomial of degree
dim(V)

Def 11.1.10 T is diagonalizable if there exists an ordered basis B for V s.t. [T is a diagonal
matrix

Thm 11111 T is diagonalizable iff V has a basis B s.t. every vector in B is an eigenvector of T

Algorithm 11.1.12 Determining whether the linear operator T is diagonalizable.

1. Find a basis C for V and compute A = [T]¢
k k
2. Write ca(z) = [[(x — \i)™ where A; are distinctand ) = dim(V)

i=1 =1
3. For each eigenvalue \;, find a basis B,, for the eigenspace E,.(T). If |B,,| < r; for some i,

then T is not diagonalizable
k
4. B= |J B,, is abasis for V and D = [T is a diagonal matrix. Note that D = P! AP where
i=1

P = [Iy]¢ g is the transition matrix from B to C.

If we let C be the standard bases, then columns of P are eigenvectors of T.

11.2 Triangular Canonical Forms



Lemma11.2.2 Suppose A is an r x m matrix, B is an r x n matrix, C is an s x m matrix, D is
an s x n matrix, E is an m x t matrix, F is an m x uw matrix, G is an n x t matrix, Hisann x u
matrix, then

A B\ (E F\ (AE+BG AF+BH
¢ p)\G H) \CE+DG CF+DH

Thm 11.2.3 (Triangular Canonical Forms). Let FF be a field.

1. Let A € M,«,(F). If the characteristic polynomial c4(z) can be factorized over linear
factors over F, then there exists an invertible matrix P € M,,.,(F) s.t. P"AP is an upper
triangular matrix.

2. Let T be alinear operator on a finite dimensional vector space V with dim(V) > 1. If the
characteristic polynomial c¢r(z) can be factorized over linear factors over F, then there
exists an ordered basis B for V s.t. [T| is an upper triangular matrix.

Tut 7

1. A linear operator T on a finite dimensional vector space V is triangularizable if there
exists an ordered basis B for V' s.t. [T]p is a triangular matrix. Then T is triangularizable iff
its characteristic polynomial can be factorized into linear factors.

11.3 Invariant Subspaces

Def11.3.1 Let V be a vector space and T : V — V a linear operator. A subspace W of V is said
to be T-invariant if T'(u) is contained in W forallu e W,i.e. T[W] ={T(u) |u € W} C W.

If Wis a T-invariant subspace of V, the linear operator T|w : W — W defined by
T)w(u) = T(u) for u € W is called the restriction of T on W.

Prop 11.3.3 Let S and T be linear operators on V. Suppose W is a subspace of V which is
both S-invariant and T-invariant. Then

1.Wis (SoT)-invariantand (SoT)|w = S|lw o T|w
2. Wis (S +T)-invariantand (S +T)|w = S|lw + T|w
3. for any scalar ¢, Wis cT'-invariant and (¢T')|w = ¢(T'|w)

Discussion 11.3.4 Suppose W is a T-invariant subspace of V' with dim(W) > 1. Let
dim(W) = m and dim(V) = n > m. Let C be an ordered basis of W and B a basis for V

A, A
extended from C. Then, [T]|p = ( ! 2
0 A;

vector w.r.t. B of the image of the basis extension under T.

) where A; = [T|w]c, and (As A3)T is the coordinate

A B
Lemma11.3.6 Let D be a square matrix s.t. D = <0 C) where both A and C are square
matrices. Then det(D) = det(A)det(C)

Thm11.3.7 Let T be a linear operator on a finite dimensional vector space V. Suppose W is a
T-invariant subspace of V with dim(W) > 1, then ¢y, (z) | cr(z)

Thm 11.3.10 Let T be alinear operator on a finite dimensional vector space V. Take a
nonzero vector u € V. Suppose the T-cyclic subspace W = span{u,T(u), T?(u),...}



generated by u is finite dimensional.

1. dim(W) = k where k is the smallest positive integer s.t. T*(u) is a linear combination of
u, T(u),y ..., T*1(u)

2. Suppose dim(W) =k
1. {u,T(u),...,T*1(u)} is a basis for W.
2.1f T*(u) = apu + a1T(u) + - - - ax_1T*(u) where ag,a1,---,ar_1 € F, then

cT‘W(a:) =—ag—aix — -+ —ap_1x* 1+ zk

Comment: The T-cyclic subspace, which is T-invariant, is a very useful invariant subspace
as it helps to find a basis B s.t. [T is in a simpler form. See Discussion 11.3.4

Discussion 11.3.12 Suppose V=W, & W, @ - - - & W}, where W, are T-invariant subspaces of
V with dim(W;) =n, > 1fort=1,2,...,k. Foreach t, letC; = {vgt),vgt), e ,vﬁft)} be an ordered
basis for W;.

Let [T'|w,]c, = A:+. Using B=C1UCyU---UC}, as an ordered basis for V, we obtain

A, 0 0
0 A, 0

T =
0 0 A,

k k
Furthermore, cr(z) = [] ca,(2) = 1 erpy (2).
i=1 i=1 ‘

11.4 Cayley-Hamilton Theorem

Notation 11.4.1 Let IF be a field and let p(z) = ap + a1z + - - - @™ Where ag,a1,...am € F

1. For alinear operator T on a vector space V over IF, we use p(T') to denote the linear
operator aply +aiT +---+axT™onV.

2. For an n x n matrix A over F, we use p(A) to denote the n x n matrix
aol, +a1tA+ -+ apA™

Lemma11.4.2 Let T be alinear operator on a vector space V over F and A be an n x n matrix
over F. In the following p(z), ¢(z) € P(F)

1. Suppose V is finite dimensional where dim(V) = n > 1. For any ordered basis B for V,
[p(T)] 8 = p([T]5)

2.1f W is a T-invariant subspace of V, then W is also a p(T)-invariant subspace of V and
p(T)|w = p(T|w)

3. Polynomial addition, scalar multiplication and polynomial multiplication also works if we
substitute z for T (slightly different form: u(T") = p(T) o ¢(T') = ¢(T) o p(T) for
u(z) = p(z)g(x)) and A.

Thm 11.4.4 (Cayley-Hamilton Theorem)

1. Let T be alinear operator on a finite dimensional vector space V where dim(V) > 1. Then
cr(T) = Oy, where Oy is the zero operator on V.
2. Let A be a square matrix. Then c4(A) = 0,.



11.5 Minimal Polynomials

Let T be a linear operator on a finite dimensional vector space V over F where dim(V) > 1.

Def 11.5.2 The minimal polynomial mr(z) of T is the monic polynomial p(z) of smallest
degree s.t. p(T) = Oy, i.e. if g(z) is a nonzero polynomial over F s.t. ¢(T) = Oy, then

deg(q(z)) > deg(p(x))

The existence of a minimal polynomial is guaranteed by Cayley-Hamilton Thm.
The minimal polynomial for a zero mapping is mo, (z) = z
Lemma11.5.5

1. Let p(x) be a polynomial over F. Then p(T') = Oy iff p(z) is divisible by the minimal
polynomial of T.

2.If Wis a T-invariant subspace of V with dim(W) > 1, then the minimal polynomial of T'is
divisible by the minimal polynomial of T'|w

3. Suppose ) is an eigenvalue of T s.t. er(z) = (z — A\)"q(z) where z — A { ¢g(z). Then
mr(z) = (z — A)*qi1(z) where 1 < s <randqi(z) | g(z)

Thm 11.5.7 Let T be a linear operator on a vector space V. Suppose W7 and W, are T-
invariant subspace of V.

1. W1 + Wy is T-invariant.
2. If W1 and Ws, are finite dimensional with dim(W;) > 1 and dim(W3) > 1,

My o, (2) = lem(myyy, (2), myyy, (2))

k
Thm 11.5.8 Suppose cr(z) = [[ (z — A:)" Where Aq, Aq,. .., A, are distinct eigenvalues of T.
1=1

k
Then mp(z) = [[(z — \;)% where 1 < s; < r; for all .. Define K (T) = Ker((T — \;1,)*%) for
=1

1= 1,2,...,k.Then,V:K,\l(T)GBK,\Z(T)---EBK)\k(T)

1. E\(T) C K (T)

2. K),(T) is a T-invariant subspace of V.
3. M| () = (2 — X%

4. e, o (2) = (& = )"

5. dim(Ky,(T)) = r;

k
Thm11.5.10 Let cp(z) = [[ (z — \i)™ where Aq, A, ..., A, are distinct eigenvalues of T. The
i=1

following are equivalent:

1. T is diagonalizable

k
2. mp(z) = H(w—)\)

3. dim(E) (T ))—mforz—12 K
4.V = E) (T) ® Ex,(T)- --@Exk(T)



Corollary 11.5.11 Let W be a T-invariant subspace of V with dim(W) > 1. If T'is
diagonalizable, then Ty is also diagonalizable.

HWA4. Let W be a T-cyclic subspace of V. Then myy, (z) = cry, ()
PYP .

e (2013/2014S1) Let A be an invertible n x n matrix. c4 1(z) = z"[c4(0)] 'c4(1/z) and
my-1(z) = z¥[m4(0)] 'm4(1/z) where k = deg(m 4(z))

e (2018/2019S1) Let p(x) and ¢(z) be polynomials over F s.t. ged(p(z),q(z)) = 1, i.e. exist
polynomials a(z),b(z) s.t. a(z)p(z) + b(z)g(z) = 1. For any nonzero v € Ker(p(T)), then
q(T)(v) # 0

11.6 Jordan Canonical Forms

Let T be alinear operator on a finite dimensional vector space V over F where dim(V) > 1.

Def11.6.2 Let )\ be a scalar. The Jordan block of order ¢ associated with X is at x ¢ matrix

Ji(A) =

Lemma 11.6.3 Given a Jordan Block J = J;()), ¢j(z) = my(z) = (z — \)?

Thm 11.6.4 Suppose cy(z) can be factorized into linear factors over F, then there exists an
ordered basis B for V s.t. [T]g = J with

Jt (A1) 0
Jt2 ()‘2)

0 Tt (Am)

where A, Ay, ... A, are (not necessarily distinct) eigenvalues of T.

Remark 11.6.5. Let A € M,,.,,(F). Suppose c4(z) can be factorized into linear factors over F,
applying Thm 11.6.4 to T = L 4 implies that we can find an invertible matrix A € M,,,.,,(F) s.t.
PlAP=J

Def 11.6.6 For a linear operator T of finite dimensional vector space V, if 3 an ordered basis
Bs.t. [T)p = J (see 11.6.4), we say that T' has a Jordan canonical form J.

Similarly, for a square matrix A4, if there exists an invertible matrix P s.t. P"'AP = J, we say
that A has a Jordan canonical form J.

Remark 11.6.8. Jordan canonical forms is unique up to the ordering of the Jordan blocks.

Thm 11.6.9 Suppose a linear operator T of finite dimensional space V has a Jordan
canonical form J (as seen in 11.6.4)



1. er(@) = [T — A"
i=1
2. mr(z) is the least common multiple of {(z — \;)% | i =1,2,...,m}
3. For every eigenvalue X of T, dim(E(T)) is the total number of Jordan blocks associated

with X in the matrix J.

12 Inner Product Spaces

In this chapter, we only focus on real and complex vector spaces.

Notation 12.1.2 Let 4 be a complex matrix. We use A to denote the conjugate of A. Define
the A* = AT as the conjugate transpose of 4. Then

1.(A+B)*=A"+ B*

2. (AC)* =C*A”

3. (cA)* =cA*

Def12.1.3 Let V be a vector space over F. An inner product on V is a mapping which

assigns to each ordered pair of vectors u,v € V a scalar (u,v) € F s.t. the following axioms
are satisfied:

1. Forall u,v € V, (u,v) = (v,u)

2. Forall u,v,w eV, (u+v,w) = (u,w) + (v,w)

3.Forallc e Fandu,v eV, (cu,v) = c{u,v) (We can derive that (u, cv) = ¢c(u,v))
4.(0,0) = 0 and for all nonzero u € V, (u,u) > 0. In particular (0,u) =0

Def12.1.5 A vector space V equipped with an inner product is called an inner product space

e The usual inner product on C" is defined as uv*
* Consider the vector space C([a,b]) the set of continuous function on the closed interval

[a, b], then an inner product on C([a, b)) is (f,g) =

* LetV be the set of all real infinite sequences (a,) s.t. Z a? converges, then an inner

n=1

productis ((a,), (b,)) = ioj a,b,. This space is known as the [,-space
n=1

12.2 Norms and Distances

Def12.2.2 Let V be an inner product space

1. For u € V, the norm (or length) of u is defined to be ||u|| = v/ (u, u)
2. For u,v € V, the distance between v and v is d(u,v) = |ju — v|

Thm12.2.4 Let V be an inner product space over F

1.1/0|| =0, and for any nonzerou € V, ||ul| > 0
2.ForanyceFandu eV, |cul| = |c|||ull

3. (Cauchy-Schwarz Ineq) For any u,v € V, |{u,v)| < |lul/||v||
4. (Triangle Ineq) For any u,v € V, |ju + v|| < ||u|| + ||v||



12.3 Orthogonal and Orthonormal Bases
Discussion 12.3.1. w and V are perpendicular to each other iff (u,v) = 0.
Def12.3.2 Let V be an inner product space

1.2 vectors u,v € V are orthogonal to each other if (u,v) =0

2. Let W be a subspace of V. A vector u is orthogonal (or perpendicular) to W if w is
orthogonal to all vectorsin W.

3. A subset B of V is orthogonal if the vectors in B are pairwise orthogonal.

4. A subset B of V is orthonormal if B is orthogonal and all vectors in B are unit vectors

Lemma12.3.3 Let V be an inner product space over F

1. Let W = span(B) where B C V. For u € V, uis orthogonal to W iff u is orthogonal to every
vectors in B.

2.If Bis an orthogonal set of nonzero vectors from V, then B is always linearly independent

3. Suppose V is finite dimensional where dim(V) > 1. Let B be an ordered orthonormal basis

for V. Then (u,v) = (u)((v))* = ([u]8)T[v]5
Note: if F = R, then (u,v) = (u)p- (v)B
Remark 12.3.4

1. Suppose V is a finite dimensional inner product space. To determine whether a set B of
nonzero vectors from V' is an orthogonal (orthonormal) basis for V, we only need to check
that (1) B is orthogonal (orthonormal) and (2) |B| = dim(V)

2. By Lemma 12.3.3.3, a finite dimensional real inner product space is essentially the same
as the Euclidean space

Thm 12.3.6 Let V be a finite dimensional inner product space. If B = {w1, ws,...,w,} is an
orthonormal basis for V, then for any vector u € V, u = (u, w1)w1 + (u, wa)ws + - - - + (u, wy)wy,.

Thm 12.3.7 (Gram-Schmidt Process). Suppose {u1,us,...,u,} is a basis for a finite
dimensional inner product space V. Let

V1T =Up
— gy — U201
vz T T )
i _ <un7v1> _ <'U/n,’l)2> e <un7vn—1>
Un = Un = % o) V1T Tuam) V2 (Vn-1,00-1) 01
Then {v1,vs,...,v,} is an orthogonal basis for V.

12.4 Orthogonal Complements & Projections

Let V be an inner product space and W a subspace of V.

Def 12.4.1 The orthogonal complement of W is defined to be the set
Wt={veV|{vu)=0VueW}CV

Thm12.4.3



1. W+ is asubspace of V

2.Wnw+t ={0},i.e. W+ W+ isadirect sum

3. If Wis finite dimensional, thenV =W @ W+

4.1f V is finite dimensional, then dim(V) = dim(W) + dim(W +)

Thm12.4.6

1. W C (WH)L.
2. If W is finite dimensional, then W = (W+)+

Def12.4.8 Suppose V=W @ W+, i.e. every u € V can be uniquely expressed as u = w + w’
where w € W and w’ € W. The vector w is called the orthogonal projection of » onto W
and is denoted by Projy, (u)

Prop 12.4.9. The mapping Projy, : V — V is a linear operator and is called the orthogonal
projection of V onto W.

Thm 12.4.11 Let W be finite dimensional. If B = {w1, ws, ..., w} is an orthonormal basis for
W, then for any vector u € V, Projy, (u) = (u, w1)wi + (u, wa)ws + - - - + (u, wr)wy and
Projy, . (u) = u — Projy, (u)

Thm 12.4.13 (Best Approximation) Suppose V=W @ W+. Then for anyu € V,
d(u, Projy, (u)) < d(u,w) for all w € W, i.e. Projy,(u) is the best approximation of uw in W.

12.5 Adjoints of Linear Operators

Let V be an inner product space over F and let T be a linear operator on V
Def12.5.1 A linear operator T* is called the adjoint of T' if (T'(u),v) = (u,T*(v)) for all u,v € V
Note:

1. the classical adjoint of a matrix is a completely different concept.
2. Iy, 0y and L4 are its own adjoint.
3. We can derive that (u, T(v)) = (T*(u), v)

Thm12.5.4

1. The adjoint of T is unique if it exists

2. Suppose V is finite dimensional where dim(V) > 1
1. T* always exists
2.If Bis an ordered orthonormal basis for V, then [T*|g = ([T]5)*
3. rank(T) = rank(T*) and nullity(T) = nullity(T™*)

Prop 12.5.7 LetF = R or C. Suppose S and T are linear operators on V s.t. §* and T* exists.
Then

1.(S+T)*=8*+T*
2.foranycePF, (cI* =¢cT™*
3.(SoT)*=T*0 S*
4.(T*)*=T



5.if Wis a subspace of V that is both T- and T*- invariant, then (T|w)* = T*|w.
Def12.5.8 LetF =R or C.

1. Suppose T* exists, T is invertibleand T-! =T*,i.e. ToT*=T*oT = Iy
1.1f F = C, then T is called a unitary operator
2. If F = R, then T is called a orthogonal operator
2. Let A be an invertible matrix over Fs.t. A= = A*,i.e. AA*=A*A=1
1.1f F = C, then A is called a unitary matrix
2. If F = R, then A is called a orthogonal matrix (only real square matrices)

An orthogonal matrix is also a unitary matrix.

Prop 12.5.9 Let V be finite dimensional where dim(V) > 1. Take any ordered orthonormal
basis B for V. If F = C (or R), then T is unitary (orthogonal) iff [Tz is a unitary (orthogonal)
matrix

Thm12.5.11 Let V be finite dimensional where dim(V) > 1. The following are equivalent

1. T is unitary (when F = C) or orthogonal (when F = R)

2. Forall u,v eV, (T(u), T(v)) = (u,v)

3.Forallu eV, |T(u)| = |ull

4. There exists an orthonormal basis {w1,ws,...,w,} for V, where n = dim(V) s.t.
{T(w1),T(w2),...,T(wy,)}is also orthonormal.

Thm 12.5.14 Let A be an n x n complex matrix. Suppose C" is equipped with the usual inner
product. The following statements are equivalent

1. Ais unitary
2. The rows of A form an orthonormal basis for C*
3. The columns of 4 form an orthonormal basis for C™

Thm12.5.15 Let V be a complex finite dimensional inner product space where dim(V) > 1. If
B and C are ordered orthonormal bases for V, then the transition matrix from Bto C'is a
unitary matrix, i.e. [Iv]lsc = ([Iv]c,s) ' = ([Iv]c,)*-

PYP

* (2012/2013 S2).
e Ker(T*oT) = Ker(T)
e Givenb e V,then z =wuis asolution to (T*oT) = T*(b) iff T'(u) is the orthogonal
projection of b onto R(T).

12.6 Unitary and Orthogonal Diagonalization

Let V an inner product space over F and let T be a linear operator on V
Def 12.6.1 Suppose T* exists.

1. T is called a self-adjoint operator if 7' = T'*
2. T is called anormaloperatorif ToT* =T*oT



Let A be a complex square matrix.

1. Ais called a Hermitian matrix if A = A*
2. Ais called a normal matrix if AA* = A*A

Remark:

e Normal operator is similar to unitary/orthogonal operator except that it doesnt need to be
identity matrix)

e Self-adjoint operator / Hermitian matrix is equal to symmetric matrices under R

e All self-adjoint operators, orthogonal operators and unitary operators are normal.

¢ All Hermitian matrices, real symmetric matrices, unitary matrices and orthogonal matrices
are normal.

Prop 12.6.2 Let V be finite dimensional with dim(V) > 1. Take an ordered orthonormal basis
BforVandlet A= [T]p.

1.If F = C (or R), then T is self-adjoint iff A is a Hermitian (symmetric) matrix.
2.T is normal iff A is a normal matrix

Lemma12.6.4 Suppose F = R or C and T' a normal operator on V.

1.Forallu,v eV, (T'(u), T(v)) = (T*(u), T*(v))

2. For any c € FF, the linear operator T — cIy is normal

3. If u is an eigenvector of T' associated with A, then w is an eigenvector of T* associated
with X

4. If w and v are eigenvector of T associated with X and p, respectively, where X\ # u, then u
and v are orthogonal.

Remark 12.6.5. Lemma 12.6.4 holds if we replace V with C" (equipped with the usual inner
product) and T by an n x n normal matrix A.

Def12.6.7 Suppose F = C (or R).

1. Suppose there exists an ordered orthonormal basis B for V s.t. [T is a diagonal matrix,
then T is called unitarily (orthogonally) diagonalizable

2. A complex (real) square matrix A is called unitarily (orthogonally) diagonalizable if
there exists a unitary (orthogonal) matrix P s.t. P*AP is a diagonal matrix.

Thm 12.6.9 && Thm 12.6.12

1. Let V be a complex (real) finite dimensional inner product space where dim(V) > 1. A
linear operator T on V is unitarily (orthogonally) diagonalizable if and only if T is normal
(self-adjoint).

2. A complex (real) square matrix A is unitarily (orthogonally) diagonalizable if and only if A
is normal (symmetric).

To find an ordered orthonormal basis B so that the matrix [T]p is a diagonal matrix, we just
union the bases of all eigenspaces of [T]¢ where C is any orthonormal basis for V and
normalize each bases.

Tut 10 Q5.



e Tis self-adjoint iff all its eigenvalues are real.
e Alinear operator P is positive definite if P is self-adjoint and (P(u),u) > 0. P is positive
definite iff all its eigenvalues are (nonzero) positive real numbers.

PYP 2018/2019S1.

e |f T'is an invertible linear operator, then T* o T is unitarily diagonalizable and all its
eigenvalues are nonzero real positive numbers.



