
General Vector Spaces

8.1 Fields

Def 8.1.2 A field consists of

 a nonempty set 
 an operation of addition  for all 
 an operation of multiplication  for all 

Axioms:

 Closure under addition
 Commutative Law for addition
 Associative Law for addition
 Existence of the Additive Identity 
 Existence of Additive Inverse
 Closure under multiplication
 Commutative Law for multiplication
 Associative Law for multiplication
 Existence of Multiplicative Identity 

 Existence of Multiplicative Inverse 
 Distributive Law

Prop 8.1.5 Additional properties of field

 Uniqueness of Additive Identity
 Uniqueness of Additive Inverse
 Uniqueness of Multiplicative Identity
 Uniqueness of Multiplicative Inverse
 For any ,  and 
 For any , if , then  or .

Prop 8.1.11 Define the trace of , denoted , as the sum of the entries on the diagonal of 
.

 If  and  are  matrix over , then 
 If  and  is an  matrix over , then 
 If  and  are  and  matrices, respectively over , then 

8.2 Vector Spaces

Def 8.2.2. A vector space consists of

 a field , where the elements are called scalars
 a nonempty set , where the elements are called vectors
 an operation of vector addition  for all 
 an operation of scalar multiplication  for all 
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A

A B n × n F tr(A + B) = tr(A) + tr(B)

c ∈ F A n × n F tr(cA) = c ⋅ tr(A)

C D m × n n × m F tr(CD) = tr(DC)
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u + v u, v ∈ V

cu c ∈ F,u ∈ V



Axioms:

 Closure under VA
 Commutative Law for VA
 Associative Law for VA
 Existence of the Zero Vector
 Existence of Additive Inverse
 Closure under SM
 For all  and , 
 For all , 
 Distributive Law I For all  and , 

 Distributive Law II For all  and , 

Prop 8.2.4 Additional properties of a vector space

 Uniqueness of the Zero Vector
 Uniqueness of the Additive Inverse
 For all ,  and 
 For all , 
 If  where  and , then  or .

8.3 Subspaces

Def 8.3.2 A subset  of a vector space  is called a subspace of  if  is itself a vector
space using the same VA and SM as in .

Note:  and  are called trivial subspaces of . Other subspaces are called proper
subspaces of .

Thm 8.3.4 A subset  of  is a subspace of  only if it satisfies property 4, 1, 6 of Def 8.2.2

Remark 8.3.5. A nonempty subset  of  is a subspace of  iff for all  and ,
then 

Thm 8.3.8 The intersection of 2 subspaces is a subspace.

Note: The union of two subspaces might not be a vector space, e.g.  and 

Def 8.3.11 Let  and  be subspaces of a vector space . The sum of  and  is
defined to be the set 

Thm 8.3.12 The sum of subspaces is a subspace.

Remark 8.3.14 Let  and  be subspaces of a vector space . Then  is the
smallest subspace of  that contains both  and .

Tut 1. Let  and  be subspaces of a vector space , then  is a subspace of  iff 
 or .

8.4 Linear Spans and Linear Independence

b, c ∈ F u ∈ V b(cu) = (bc)u

u ∈ V 1u = u

c ∈ F u, v ∈ V c(u + v) = cu + cv

b, c ∈ F u ∈ V (b + c)u = bu + cu

u ∈ V 0u = 0 (−1)u = −u

c ∈ F c0 = 0

cu = 0 c ∈ F u ∈ V c = 0 u = 0

W V V W

V

{0} V V

V

W V V

W V V a, b ∈ F u, v ∈ W

au + bv ∈ W

W1 = {(x, 0) ∣ x ∈ F}

W2 = {(0, y) ∣ y ∈ F}

W1 W2 V W1 W2

W1 + W2 = {w1 + w2 ∣ w1 ∈ W1,w2 ∈ W2}

W1 W2 V W1 + W2

V W1 W2

W1 W2 V W1 ∪ W2 V

W1 ⊆ W2 W2 ⊆ W1



Let  be a vector space over a field  and  be a nonempty subset of 

Def 8.4.2 Let . For any scalars , the vector  is
called a linear combination of . Note:  is finite)

Thm 8.4.3 The set  of all linear combinations of (finite) vectors taken from  is a subspace
of 

Def 8.4.4 The subspace  in Thm 8.4.3 is called the subspace of  spanned by  and we
write . We also say  is a linear span of  and  spans . Note that 

Def 8.4.8

 Let . The vectors are linearly independent if the vector equation 
 has only the trivial solution 

 B is linearly independent if for every finite subset  of ,  are
linearly independent.

Remark 8.4.9 Linear independence is used to determine whether there are redundant
vectors in a set.

8.5 Bases and Dimensions

Def 8.5.1 A subset  of a vector space  is called a basis for  if  is lin. ind. and  spans 

A vector space  is called finite dimensional if it has a basis consisting of finitely many
vectors; otherwise,  is called infinite dimensional

Remark 8.5.2

 For convenience, the empty set  is defined as the basis for a zero space
 Every vector space has a basis. Proof by Zorn's Lemma

Lemma 8.5.5 Let  be a finite dimensional vector space and  a basis for 
. Any vector  can then be expressed uniquely as a linear combination of vectors in B.

Def 8.5.6 Let  be a finite dimensional vector space over a field  where  is not a zero
space

 A basis  for  is called an ordered basis if the vectors in  have a fixed
order s.t.  is the first vector,  is the second vector etc.

 Let  be an ordered basis for  and let . If 
for  then the coefficients  are called the coordinates of 
relative to the basis . In particular the vector  or 

 in  is called the coordinate vector of  relative to the basis .

Lemma 8.5.7 Let  be a finite dimensional vector space over a field  where  is not a zero
space and let  be its ordered basis.

 For any ,  iff 
 For any  and , 

V F B V

v1, v2, … , vm ∈ V c1, c2, … cm c1v1 + c2v2 + … cmvm

v1, v2, … , vm m

W B

V

W V B

W = spanF(B) W B B W B ⊆ W

v1, v2, … , vk ∈ V

c1v1 + c2v2 + … ckvk = 0 c1 = c2 = ⋯ = ck = 0

{v1, v2, … , vk} B v1, v2, … , vk

B V V B B V

V

V

∅

V B = {v1, v2, … , vn} V

u ∈ V

V F V

B = {v1, v2, … , vn} V B

v1 v2

B = {v1, v2, … , vn} V u ∈ V u = c1v1 + c2v2 + … cnvn

c1, c2, … , cn ∈ F c1, c2, … , cn u

B (u)B = (c1, c2, … , cn)

[u]B = (c1, c2, … , cn)T Fn u B

V F V

B

u, v ∈ V u = v (u)B = (v)B
v1, v2, … vr ∈ V c1, c2, … cr ∈ F

(c1v1 + c2v2 + ⋯ crvr)B = c1(v1)B + c2(v2)B + ⋯ cr(vr)B



Thm 8.5.10 Let  be a vector space with a basis of  vectors. Then

 any subset of  with more than  vectors is always linearly dependent
 any subset of  with less than  vectors cannot span .

Def 8.5.11 The dimension of a finite dimensional vector space  over a field  denoted by 
 is defined to be the number of vectors in a basis for . In addition, we define the

dimension of a zero space to be 0.

Thm 8.5.13 Let  be a finite dimensional vector space and  a subset of . The following
are equivalent:

  is a basis for 
  is linearly independent and 
  spans  and 

Thm 8.5.15 Let  be a subspace of a finite dimensional vector space . Then

 
 if , then .

Remark:

 Row equivalent matrices have the same rowspace but may not have the same column
space

 Let  be a matrix and  a row-echelon form of . A basis for the column space of  can
be obtained by taking the columns of  that correspond to the pivot columns in . A basis
for the rowspace of  can be obtained by taking the set of nonzero rows in  (or the
corresponding rows in ).

Thm 8.5.17 Let  be a finite dimensional vector space. Suppose  is a linearly independent
subset of . Then there exists a basis  for  s.t. .

To extend a basis, put the current basis in rows, do Gaussian elimination, and add  if
column  is not a pivot column.

Tut 2. Let  and  be finite dimensional subspaces of a vector space.

 Let  be basis for  respectively. Then 
 

8.6 Direct Sums of Subspaces

Let  and  be subspaces of a vector space .

Def 8.6.3 We say that the subspace  is a direct sum of  and  if every vector 
 can be expressed uniquely as  where  and .

Theorem 8.6.5  is a direct sum iff 

Tut 1 Q4.  is the smallest subspace of  that contains both  and .

V n

V n

V n V

V F

dimF(V ) V

V B V

B V

B |B| = dim(V )

B V |B| = dim(V )

W V

dim(W) ≤ dim(V )

dim(W) = dim(V ) W = V

A R A A

A R

A R

A

V C

V B V C ⊆ B

(ei)

i

W1 W2

B1,B2 W1,W2 span(B1 ∪ B2) = W1 + W2

dim(W1 + W2) = dim(W1) + dim(W2) − dim(W1 ∩ W2)

W1 W2 V

W1 ⊕ W2 W1 W2

u ∈ W1 + W2 u = w1 + w2 w1 ∈ W1 w2 ∈ W2

W1 + W2 W1 ∩ W2 = {0}

W1 + W2 V W1 W2



Tut 1 Q5.  is a subspace of  iff  or 

Theorem 8.6.7 Suppose  is a direct sum.

 If  and  are bases for  and  respectively, then  is a basis for 
 If both  and  are finite dimensional, then dim( ) = dim( ) + dim( )

Remark 8.6.8 Even if  is not a direct sum, it is still true that span( ) = .

Def 8.6.9 We can generalize the definition of sum and direct sum to  subspaces of . 
 is a direct sum iff , etc

8.7 Cosets and Quotient Spaces

Let  be a subspace of a vector space .

Def 8.7.1 For , the set  is called the coset of  containing 

Thm 8.7.3

 For any , the following are equivalent:
 
 
 
 

 For any , either  or 

Lemma 8.7.5

 Suppose  s.t.  and . Then 

 Suppose  s.t. . Then  for all 

Def 8.7.6

 We define the addition of two cosets by  for .
 We define the scalar multiplication of a coset by  for  and .

Thm 8.7.8 Denote the set of all cosets of  in  by . Then  is a
vector space over  using the addition and scalar multiplication defined in Def 8.7.6

Its zero vector is .

Def 8.7.9 The vector space  is called the quotient space of  modulo 

Thm 8.7.11 Let  be a basis for .

 For ,  is a basis for  iff 
 is a basis for 

 dim( ) = dim(V  dim(W

9 General Linear Transformations

W1 ∪ W2 V W1 ⊆ W2 W2 ⊆ W1

W1 + W2

B1 B2 W1 W2 B1 ∪ B2 W1 ⊕ W2

W1 W2 W1 ⊕ W2 W1 W2

W1 + W2 B1 ∪ B2 W1 + W2

k V

W1 + ⋯ + Wk W1 ∩ W2 = {0}, (W1 + W2) ∩ W3 = {0}, …

W V

u ∈ V W + u = {w + u ∣ w ∈ W} W u

v,w ∈ V

v ∈ W + w

w ∈ W + v

v − w ∈ W

W + v = W + w

v,w ∈ V W + v = W + w (W + v) ∩ (W + w) = ∅

u1,u2, v1, v2 ∈ V W + u1 = W + u2 W + v1 = W + v2

W + (u1 + v1) = W + (u2 + v2)

u1,u2 ∈ V W + u1 = W + u2 W + cu1 = W + cu2 c ∈ F

(W + u) + (W + v) = W + (u + v) u, v ∈ V

c(W + u) = W + cu c ∈ F u ∈ V

W V V /W = {W + u ∣ u ∈ V } V /W

F

W(= W + 0)

V /W V W

{w1,w2, … ,wm} W

v1, v2, … , vk ∈ V {v1, v2, … , vk,w1,w2, … ,wm} V

{W + v1,W + v2, … ,W + vk} V /W

V /W



9.1 Linear Transformations

Let  and  be vector spaces over the same field .

Def 9.1.2 A linear transformation  is a mapping from  to  s.t.

 For all , 
 For all  and , .

If , the linear transformation  is called a linear operator on  
If , the linear transformation  is called a linear functional on 

Remark 9.1.3 A mapping  is a linear transformation iff  for
all  and .

Prop 9.1.5 If  is a linear transformation, then .

Remark 9.1.6 Suppose  has a basis  and let  be a linear transformation.

 is completely determined by the images of vectors from , i.e.  is completely
determined by  for 
We can define a linear transformation  by using the basis , i.e. setting the
value of  for all 

9.2 Matrices for Linear Transformations

 denotes column coordinate vector relative to .  denotes row coordinate vector
relative to .
Let  be a linear transformation where  and  are finite dimensional vector
spaces over a field  s.t.  and .

 and  are ordered bases for  and  respectively

Thm 9.2.1 Let  be a linear transformation. For any ordered bases  and  for 
and  respectively, there exists an  matrix  s.t.  for all 

Def 9.2.2. Let . The matrix  is called
the matrix for  relative to the ordered bases  and . This matrix  is usually denoted by 

.

Note that  for all 

If  and , we simply denote  by  and called it the matrix for  relative to
the ordered basis .

Lemma 9.2.3 Let  and  be a linear transformation. For any  and , we have  iff 

Thm 9.2.6 Suppose . Suppose  and  are two ordered bases for . For any 
, the matrix 

converts  to , i.e. .

V W F

T : V → W V W

u, v ∈ V T (u + v) = T (u) + T (v)

c ∈ F u ∈ V T (cu) = cT (u)

W = V T : V → V V

W = F T : V → F V

T : V → W T (au + bv) = aT (u) + bT (v)

a, b ∈ F u, v ∈ V

T : V → W T (0) = 0

V B T

T B T (u)

T (v1), …T (vm) v1, … , vm ∈ V

S : V → W B

S(v) v ∈ B

[u]B B (u)B
B

T : V → W V W

F n = dim(V ) ≥ 1 m = dim(W) ≥ 1

B C V W

T : V → W B C V

W dim(W) × dim(V ) A [T (u)]C = A[u]B
u ∈ V

B = {v1, v2, … , vn} A = ( )[T (v1)]C [T (v2)]C ⋯ [T (vn)]C
T B C A

[T ]C,B

[T (u)]C = [T ]C,B[u]B u ∈ V

W = V C = B [T ]B,B [T ]B T

B

T1 T2 B C T1 = T2

[T1]C,B = [T2]C,B

IV : V → V B C V

u ∈ V [IV ]C,B

[u]B [u]C [u]C = [IV (u)]C = [IV ]C,B[u]B



is called the transition matrix from  to .
is invertible, and its inverse is the transition matrix from  to , i.e. 

9.3 Compositions of Linear Transformations

Let  and  be linear transformations. Suppose  are finite
dimensional where .

Thm 9.3.1 Then the composition mapping , defined by  for 
 is also a linear transformation.

Thm 9.3.3 Let  be ordered bases for  respectively. Then 

Def 9.3.5 Let  be a linear operator. For any nonnegative integer , define

Corollary 9.3.6 Let  be a linear operator. Let  be an ordered basis. Then 

Lemma 9.3.8 Let  be a linear operator. Let  are two ordered bases for  and  the
transition matrix from  to , i.e. . Then 

Def 9.3.9 Let  be a field and .  is said to be similar to  if there exists an
invertible matrix  s.t. 

Thm 9.3.10 Let  be a linear operator on  and let  be an ordered basis for . Then an 
 matrix  over  is similar to  iff there exists an ordered basis  for  s.t. .

9.4 The Vector Space 

Let  and  be vector spaces over the same field . Suppose  are finite dimensional
where  with  and  be ordered basis for  and  respectively.

Def 9.4.1

 Let  be linear transformations. We define a mapping  by 
 for .

 Let  be a linear transformation and  We define a mapping  by 
 for .

Both mappings  and  are linear transformations.

Prop 9.4.3

 If  are linear transformations, then 
 If  be a linear transformation and , then 

Remark 9.4.4 Matrices and linear transformations have a lot of similarities. The observations
above show their relations in addition and scalar multiplication.

B C

C B [IV ]B,C

S : U → V T : V → W U ,V ,W

dim(U), dim(V ), dim(W) ≥ 1

T ∘ S : U → W (T ∘ S)(u) = T (S(u))

u ∈ U

A,B,C U ,V ,W

[T ∘ S]C,A = [T ]C,B[S]B,A

T m

T m =
⎧
⎨⎩
Iv if m = 0
T ∘ T ∘ ⋯ ∘ T

m times

if m ≥ 1

T B [T m]B = ([T ]B)m

T B,C V P

B C P = [IV ]C,B [T ]B = P −1[T ]CP

F A,B ∈ Mn×n(F) B A

P ∈ Mn×n(F) B = P −1AP

T V C V

n × n D F [T ]C B V D = [T ]B

L(V ,W)

V W F V ,W

dim(V ), dim(W) ≥ 1 B C V W

T1,T2 : V → W T1 + T2 : V → W

(T1 + T2)(u) = T1(u) + T2(u) u ∈ V

T : V → W c ∈ F cT : V → W

(cT )(u) = cT (u) u ∈ V

T1 + T2 cT

T1,T2 : V → W [T1 + T2]C,B = [T1]C,B + [T2]C,B

T : V → W c ∈ F [cT ]C,B = c[T ]C,B



Thm 9.3.3 shows that the composition of linear transformations is equivalent to matrix
multiplication.
Thm 9.6.6 shows a corresponding analog of matrix inverse in linear transformations.

Thm 9.4.5 Let  be the set of all linear transformations from  to . Then  is
a vector space over  with addition and scalar multiplication defined in Def 9.4.1.

Furthermore, if  and  are finite dimensional, then dim( ) = dim(V dim(W

Def 9.4.6 The vector space  is called the dual space of  and is denoted by 

By Thm 9.4.5. dim( ) = dim(V

9.5 Kernels and Ranges

Let  be a linear transformation.

Def 9.5.1

 The subset Ker(T   of  is called the kernel of . Ker(T is also known
as the nullspace of  and denoted by 

 The subset  of  is called the range of 

Thm 9.5.2 Ker(T is a subspace of  , and  is a subspace of .

Def 9.5.4

 If Ker(T is finite dimensional, then dim(Ker(T is called the nullity of  and is denoted by
nullity(T

 If RT is finite dimensional, then dim(RT is called the rank of  and is denoted by
rank(T

Lemma 9.5.6 Suppose  and  are finite dimensional with dim(V  and dim(W . For
any ordered bases  and  for  and  respectively

  is the nullspace of  and nullity(T  nullity( )
  is the column space of  and rank(T  rank( )

Thm 9.5.7 Dimension Theorem for Linear Transformations). Let  where  and 
are finite dimensional. Then, rank(T  nullity(T  dim(V

Thm 9.5.9 Suppose  and  are subsets of  s.t.  is a basis for Ker(T and  is
a basis for RT and for any  if , then . Then  is a basis for .

Def 9.5.11 Let  be a mapping.

  is injective or one-to-one if , there exists at most one  s.t. .
  is surjective or onto if , there exists at least one  s.t. .
  is bijective if it is both injective and surjective.

Prop 9.5.12

  is injective iff Ker(T   iff nullity(T  0

L(V ,W) V W L(V ,W)

F

V W L(V ,W)

L(V , F) V V ∗

V ∗

T : V → W

{u ∈ V ∣ T (u) = 0} V T

T N(T )

R(T ) = {T (u) ∣ u ∈ V } W T

V R(T ) W

T

T

V W ≥ 1 ≥ 1

B C V W

{[u]B ∣ u ∈ Ker(T )} [T ]C,B [T ]C,B

{[u]C ∣ u ∈ R(T )} [T ]C,B [T ]C,B

T : V → W V W

B C V B {T (v) ∣ v ∈ C}

v, v′ ∈ C v ≠ v′ T (v) ≠ T (v′) B ∪ C V

f : A → B

f ∀z ∈ B x ∈ A f(x) = z

f ∀z ∈ B x ∈ A f(x) = z

f

T {0}



  is surjective iff RT  W.

Note:

 Let  and  be linear transformations.  and 

 Let  be linear transformations. Then  and 

9.6 Isomorphism

Let  be a linear transformation.

Def 9.6.1 The linear transformation  is called an isomorphism from  onto  if 
is bijective.

Def 9.6.3 A mapping  is bijective iff there exists a mapping  s.t. 
 and  where  and  are identity operators on  and  respectively.

The mapping  is known as the inverse of  and is denoted by . Thus a bijective mapping
is also called an invertible mapping

Thm 9.6.4 If  is an isomorphism, then  is a linear transformation and hence is also an
isomorphism.

Thm 9.6.6 Suppose  and  are finite dimensional with dim(V  dim(W . Let  and 
be ordered bases for  and  respectively.

  is an isomorphism iff  is an invertible matrix
 If  is an isomorphism, 

Thm 9.6.8 Let  and  be linear transformations s.t. .

  is injective and  is surjective.
 If  and  are finite dimensional and dim(V  dim(W, then  and  are isomorphisms, 

 and .

Def 9.6.10 Let  and  be vector spaces over a field . If there exists an isomorphism from 
 onto , then  is said to be isomorphic to  and we write  or simply .

Thm 9.6.13 Let  and  be finite dimensional vector spaces over the same field. Then  is
isomorphic to  iff dim(V  dim(W

Example: , , 

Thm 9.6.15 The First Isomorphism Theorem). Let  be a linear transformation.
Then 

10 Multilinear Forms and Determinants

10.1 Permutations

T

S : U → V T : V → W Ker(S) ⊆ Ker(T ∘ S)

R(T ∘ S) ⊆ R(T )

S,T : V → W R(S + T ) ⊆ R(S) + R(T )

Ker(S) ∩ Ker(T ) ⊆ Ker(S + T )

T : V → W

T : V → W V W T

T : V → W S : W → V

S ∘ T = IV T ∘ S = IW IV IW V W

S T T −1

T T −1

V W ≥ 1 B C

V W

T [T ]C,B

T [T −1]B,C = ([T ]C,B)−1

S : W → V T : V → W T ∘ S = IW

S T

V W S T

S−1 = T T −1 = S

V W F

V W V W V ≅F W V ≅W

V W V

W

Mn×n(F) ≅F Fmn Pn(F) ≅F Fn+1 Cn ≅R R2n

T : V → W

V /Ker(T ) ≅R(T )



Def 10.1.2 A permutation  of  is a bijective mapping from  to

. We usually represent  by . The set of all permutations

of  is denoted by . Note that 

Notation 10.1.4

 For ,  is also a permutation.
 For , let  denote the permutation of  s.t.

This permutation is called the transposition of  and . Note that  and 

Lemma 10.1.6

 
 For any , 

Lemma 10.1.7 For every , there exists  s.t. 

Def 10.1.9 Let . An inversion occurs in  if  for . If the total number of
inversions in  is even,  is called an even permutation; otherwise  is an odd permutation.

The sign (or parity) of , denoted as  is defined to be 1 if  is even and -1 if  is odd.

Thm 10.1.11 For any , . Moreover, 

Corollary 10.1.12

 If  is a product of  transpositions, then 
 A permutation is even (respectively, odd) if it is a product of even (respectively, odd)

number of transpositions.
 For any , 

10.2 Multilinear Forms

Def 10.2.1 Let  be a vector space over a field . A mapping  is called a
multilinear form on  if for each , 

for all  and 

A multilinear form  on  is called alternative if  whenever  for
some 

Define  by

σ {1, 2, … ,n} {1, 2, … ,n}

{1, 2, … ,n} σ ( )
1 2 … n

σ(1) σ(2) … σ(n)
{1, 2, … ,n} Sn |Sn| = n!

σ, τ ∈ Sn στ = σ ∘ τ

α,β ∈ {1, 2, … ,n} ϕα,β {1, 2, … ,n}

ϕα,β(k) =
⎧⎪⎨⎪⎩k if k ≠ α,β
α if k = α

β if k = β

α β ϕα,β = ϕβ,α

ϕ−1
α,β = ϕα,β

{σ−1 ∣ σ ∈ Sn} = Sn

τ ∈ Sn {τσ ∣ σ ∈ Sn} = {στ ∣ σ ∈ Sn} = Sn

σ ∈ Sn α1,α2, …αk ∈ {1, 2, … ,n}

σ = σα1,α1+1σα2,α2+1 ⋯σαk,αk+1

σ ∈ Sn σ σ(i) > σ(j) i < j

σ σ σ

σ sgn(σ) σ σ

σ, τ ∈ Sn sgn(στ) = sgn(σ)sgn(τ) sgn(ϕα,β) = −1

σ ∈ Sn k sgn(σ) = (−1)k

σ ∈ Sn sgn(σ−1) = sgn(σ)

V F T : V n → F

V i, 1 ≤ i ≤ n

T (u1, …ui−1, av + bw,ui+1, … ,un) = aT (u1, …ui−1, v,ui+1, … ,un) + bT (u1, …ui−1,w,ui+1, … ,un)

a, b ∈ F u1, …ui−1,ui+1, … ,un, v,w ∈ V

T V T (u1,u2, …un) = 0 uα = uβ

α ≠ β

P : Mn×n(F) → F

P(A) = ∑
σ∈Sn

aσ(1),1aσ(2),2 ⋯ aσ(n),n



for . The value  is known as the permanent of .

Thm 10.2.3 Let  be an alternative multilinear form on a vector space . Then for
all  and , we have 

Remark 10.2.4 Let  be a multilinear form on a finite dimensional vector space 
over a field . Fix a basis  for . Take any , let

where 

 Let  be the set of all mapping from  to . We have

 Suppose  is an alternative form.
 If , then  is a zero mapping.
 If , then (10.3 still holds if we change the set  to the set of all injective mapping.

In particular, when  we have 

10.3 Determinants

Def 10.3.1 A mapping  is called a determinant function on  if it
satisfies the following axioms:

 By regarding the columns of matrices in  as vectors in ,  is a multilinear form
on .

  if  has two identical columns, i.e. as a multilinear form on ,  is
alternative.

 

Theorem 10.3.2 There exists one and only one determinant function on  and it is
the function det :  defined by

for . This formula is known as the classical definition of determinants.

Lemma 10.3.4 Let . Then 

Thm 10.3.5 Cofactor expansions). Let . Define  to be the 
 matrix obtained from  by deleting the th row and the th column. Then for

any  and ,

A = (aij) ∈ Mn×n(F) P(A) A

T : V n → F V

σ ∈ Sn u1,u2, … ,un ∈ V T (u1,u2, … ,un) = sgn(σ) ⋅ T (uσ(1),uσ(2), … ,uσ(n))

T : V n → F V

F {v1, v2, … , vm} V u1,u2, …un ∈ V

u1 = a11v1 + a21v2 + ⋯ + am1vm

u2 = a12v1 + a22v2 + ⋯ + am2vm

⋮
un = a1nvn + a2nv2 + ⋯ + amnvm

a11, a12, … , amn ∈ F

F {1, 2, …n} {1, 2, … ,m}

T (u1,u2, … ,un) = ∑
f∈F

af(1),1af(2),2 ⋯ af(n),n T (vf(1), vf(2), … , vf(n))

T

m < n T

m ≥ n F

m = n

T (u1,u2, … ,un) = ∑
σ∈Sn

sgn(σ)aσ(1),1aσ(2),2 ⋯ aσ(n),n T (v1, v2, … , vn)

D : Mn×n(F) → F Mn×n(F)

Mn×n(F) Fn D

Fn

D(A) = 0 A ∈ Mn×n(F) Fn D

D(In) = 1

Mn×n(F)

Mn×n(F) → F

det(A) = ∑
σ∈Sn

sgn(σ)aσ(1),1aσ(2),2 ⋯ aσ(n),n

A = (aij) ∈ Mn×n(F)

A ∈ Mn×n(F) det(A) = det(AT )

A = (aij) ∈ Mn×n(F)
~
Aij

(n − 1) × (n − 1) A i j

α = 1, 2, … ,n β = 1, 2, … ,n

det(A) = aα1Aα1 + aα2Aα2 + ⋯ + aαnAαn

= a1βA1β + a2βA2β + ⋯ + anβAnβ



where .

11 Diagonalization and Jordan Canonical Forms

11.1 Eigenvalues and Diagonalization

Let  be a linear operator on a finite dimensional vector space  with .

Def 11.1.2 Let  be a vector space. A nonzero vector  is called an eigenvector of  if 
 for some scalar eigenvalue .

Def 11.1.4  is the determinant of the matrix  where  is any ordered basis for .

Remark 11.1.5 The determinant of  is independent of the choice of basis .

Thm 11.1.6 For a scalar , let  be the linear operator defined by 
 for some 

  is an eigenvalue of  iff . (  is a solution to the charateristic polynomial
of T

  is an eigenvector of  associated with  iff  is a nonzero vector in the eigenspace 

Notation 11.1.7

 Denote the characteristic polynomial of , 
 Denote the eigenspace of  associated with  as 

Remark 11.1.8 For a basis  of , we have , a monic polynomial of degree 

Def 11.1.10  is diagonalizable if there exists an ordered basis  for  s.t.  is a diagonal
matrix

Thm 11.1.11  is diagonalizable iff  has a basis  s.t. every vector in  is an eigenvector of 
.

Algorithm 11.1.12 Determining whether the linear operator  is diagonalizable.

 Find a basis  for  and compute 

 Write  where  are distinct and 

 For each eigenvalue , find a basis  for the eigenspace . If  for some ,
then  is not diagonalizable

  is a basis for  and  is a diagonal matrix. Note that  where 

 is the transition matrix from  to .

If we let  be the standard bases, then columns of  are eigenvectors of .

11.2 Triangular Canonical Forms

Aij = (−1)i+j det(
~
Aij)

T V dim(V ) ≥ 1

V u ∈ V T

T (u) = λu λ

det(T ) [T ]B B V

T B

λ λIV − T

(λIV − T )(u) = λu − T (u) u ∈ V

λ T det(λIV − T ) = 0 λ

u ∈ V T λ u

Ker(T − λIV )

T cT (x) = det(xIV − T )

A λ Eλ(A)

B V cT (x) = c[T ]B(x)

dim(V )

T B V [T ]B

T V B B T

T

C V A = [T ]C

cA(x) =
k

∏
i=1

(x − λi)ri λi

k

∑
i=1

= dim(V )

λi Bλi
Eλi

(T ) |Bλi
| < ri i

T

B =
k

⋃
i=1

Bλi V D = [T ]B D = P −1AP

P = [IV ]C,B B C

C P T



Lemma 11.2.2 Suppose  is an  matrix,  is an  matrix,  is an  matrix,  is
an  matrix,  is an  matrix,  is an  matrix,  is an  matrix,  is an 
matrix, then

Thm 11.2.3 Triangular Canonical Forms). Let  be a field.

 Let . If the characteristic polynomial  can be factorized over linear
factors over , then there exists an invertible matrix  s.t.  is an upper
triangular matrix.

 Let  be a linear operator on a finite dimensional vector space  with . If the
characteristic polynomial  can be factorized over linear factors over , then there
exists an ordered basis  for  s.t.  is an upper triangular matrix.

Tut 7

 A linear operator  on a finite dimensional vector space  is triangularizable if there
exists an ordered basis  for  s.t.  is a triangular matrix. Then  is triangularizable iff
its characteristic polynomial can be factorized into linear factors.

11.3 Invariant Subspaces

Def 11.3.1 Let  be a vector space and  a linear operator. A subspace  of  is said
to be -invariant if  is contained in  for all , i.e. .

If  is a T-invariant subspace of , the linear operator  defined by 
 for  is called the restriction of  on .

Prop 11.3.3 Let  and  be linear operators on . Suppose  is a subspace of  which is
both -invariant and -invariant. Then

  is -invariant and 
  is -invariant and 
 for any scalar ,  is -invariant and 

Discussion 11.3.4 Suppose  is a -invariant subspace of  with . Let 
 and . Let  be an ordered basis of  and  a basis for 

extended from . Then,  where , and  is the coordinate

vector w.r.t.  of the image of the basis extension under T.

Lemma 11.3.6 Let  be a square matrix s.t.  where both  and  are square

matrices. Then 

Thm 11.3.7 Let  be a linear operator on a finite dimensional vector space . Suppose  is a
-invariant subspace of  with , then 

Thm 11.3.10 Let  be a linear operator on a finite dimensional vector space . Take a
nonzero vector . Suppose the -cyclic subspace  = span

A r × m B r × n C s × m D

s × n E m × t F m × u G n × t H n × u

( )( ) = ( )
A B

C D

E F

G H

AE + BG AF + BH

CE + DG CF + DH

F

A ∈ Mn×n(F) cA(x)

F P ∈ Mn×n(F) P −1AP

T V dim(V ) ≥ 1

cT (x) F

B V [T ]B

T V

B V [T ]B T

V T : V → V W V

T T (u) W u ∈ W T [W ] = {T (u) ∣ u ∈ W} ⊆ W

W V T |W : W → W

T |W (u) = T (u) u ∈ W T W

S T V W V

S T

W (S ∘ T ) (S ∘ T )|W = S|W ∘ T |W
W (S + T ) (S + T )|W = S|W + T |W

c W cT (cT )|W = c(T |W )

W T V dim(W) ≥ 1

dim(W) = m dim(V ) = n ≥ m C W B V

C [T ]B = ( )
A1 A2

0 A3
A1 = [T |W ]C (A2 A3)T

B

D D = ( )
A B

0 C
A C

det(D) = det(A)det(C)

T V W

T V dim(W) ≥ 1 cT |W (x) ∣ cT (x)

T V

u ∈ V T W {u,T (u),T 2(u), …}



generated by  is finite dimensional.

  where  is the smallest positive integer s.t.  is a linear combination of 

 Suppose 
  is a basis for .
 If  where , then 

Comment: The -cyclic subspace, which is -invariant, is a very useful invariant subspace
as it helps to find a basis  s.t.  is in a simpler form. See Discussion 11.3.4

Discussion 11.3.12 Suppose  where  are -invariant subspaces of
 with  for . For each , let  be an ordered

basis for .

Let . Using  as an ordered basis for , we obtain

Furthermore, .

11.4 Cayley-Hamilton Theorem

Notation 11.4.1 Let  be a field and let  where 

 For a linear operator  on a vector space  over , we use  to denote the linear
operator  on .

 For an  matrix  over , we use  to denote the  matrix 

Lemma 11.4.2 Let  be a linear operator on a vector space  over  and  be an  matrix
over . In the following 

 Suppose  is finite dimensional where . For any ordered basis  for , 

 If  is a -invariant subspace of , then  is also a -invariant subspace of  and 

 Polynomial addition, scalar multiplication and polynomial multiplication also works if we
substitute  for  (slightly different form:  for 

) and .

Thm 11.4.4 Cayley-Hamilton Theorem)

 Let  be a linear operator on a finite dimensional vector space  where . Then 
, where  is the zero operator on .

 Let  be a square matrix. Then .

u

dim(W) = k k T k(u)

u,T (u), … ,T k−1(u)

dim(W) = k

{u,T (u), … ,T k−1(u)} W

T k(u) = a0u + a1T (u) + ⋯ ak−1T
k−1(u) a0, a1, ⋯ , ak−1 ∈ F

cT |W (x) = −a0 − a1x − ⋯ − ak−1x
k−1 + xk

T T

B [T ]B

V = W1 ⊕ W2 ⊕ ⋯ ⊕ Wk Wt T

V dim(Wt) = nt ≥ 1 t = 1, 2, … , k t Ct = {v(t)
1 , v(t)

2 , … , v(t)
nt

}

Wt

[T |Wt
]Ct

= At B = C1 ∪ C2 ∪ ⋯ ∪ Ck V

[T ]B =

⎛⎜⎝A1 0 0
0 A2 0

⋱
0 0 Ak

⎞⎟⎠cT (x) =
k

∏
i=1

cAi
(x) =

k

∏
i=1

cT |Wi
(x)

F p(x) = a0 + a1x + ⋯ amx
m a0, a1, … am ∈ F

T V F p(T )

a0IV + a1T + ⋯ + amT
m V

n × n A F p(A) n × n

aoIn + a1A + ⋯ + amA
m

T V F A n × n

F p(x), q(x) ∈ P(F)

V dim(V ) = n ≥ 1 B V

[p(T )]B = p([T ]B)

W T V W p(T ) V

p(T )|W = p(T |W )

x T u(T ) = p(T ) ∘ q(T ) = q(T ) ∘ p(T )

u(x) = p(x)q(x) A

T V dim(V ) ≥ 1

cT (T ) = OV OV V

A cA(A) = 0n



11.5 Minimal Polynomials

Let  be a linear operator on a finite dimensional vector space  over  where .

Def 11.5.2 The minimal polynomial  of  is the monic polynomial  of smallest
degree s.t. , i.e. if  is a nonzero polynomial over  s.t. , then 

The existence of a minimal polynomial is guaranteed by Cayley-Hamilton Thm.

The minimal polynomial for a zero mapping is 

Lemma 11.5.5

 Let  be a polynomial over . Then  iff  is divisible by the minimal
polynomial of .

 If  is a -invariant subspace of  with , then the minimal polynomial of  is
divisible by the minimal polynomial of 

 Suppose  is an eigenvalue of  s.t.  where . Then 
 where  and 

Thm 11.5.7 Let  be a linear operator on a vector space . Suppose  and  are -
invariant subspace of .

  is -invariant.
 If  and  are finite dimensional with  and , 

Thm 11.5.8 Suppose  where  are distinct eigenvalues of .

Then  where  for all . Define  for 

. Then, 

 
  is a -invariant subspace of .
 

 
 

Thm 11.5.10 Let  where  are distinct eigenvalues of . The

following are equivalent:

  is diagonalizable

 

  for 
 

T V F dim(V ) ≥ 1

mT (x) T p(x)

p(T ) = OV q(x) F q(T ) = OV

deg(q(x)) ≥ deg(p(x))

mOV
(x) = x

p(x) F p(T ) = OV p(x)

T

W T V dim(W) ≥ 1 T

T |W
λ T cT (x) = (x − λ)rq(x) x − λ ∤ q(x)

mT (x) = (x − λ)sq1(x) 1 ≤ s ≤ r q1(x) ∣ q(x)

T V W1 W2 T

V

W1 + W2 T

W1 W2 dim(W1) ≥ 1 dim(W2) ≥ 1

mT |W1+W2
(x) = lcm(mT |W1

(x),mT |W2
(x))

cT (x) =
k

∏
i=1

(x − λi)ri λ1,λ2, … ,λk T

mT (x) =
k

∏
i=1

(x − λi)si 1 ≤ si ≤ ri i Kλi
(T ) = Ker((T − λiIv)si)

i = 1, 2, … , k V = Kλ1(T ) ⊕ Kλ2(T ) ⋯ ⊕ Kλk
(T )

Eλi
(T ) ⊆ Kλi

(T )

Kλi
(T ) T V

mT |Kλi
(T )

(x) = (x − λi)si

cT |Kλi
(T )(x) = (x − λi)ri

dim(Kλi
(T )) = ri

cT (x) =
k

∏
i=1

(x − λi)ri λ1,λ2, … ,λk T

T

mT (x) =
k

∏
i=1

(x − λi)

dim(Eλi
(T )) = ri i = 1, 2, … , k

V = Eλ1(T ) ⊕ Eλ2(T ) ⋯ ⊕ Eλk
(T )



Corollary 11.5.11 Let  be a -invariant subspace of  with . If  is
diagonalizable, then  is also diagonalizable.

HW4. Let  be a -cyclic subspace of . Then 

PYP .

2013/2014S1 Let  be an invertible  matrix.  and 
 where 

2018/2019S1 Let  and  be polynomials over  s.t. , i.e. exist
polynomials  s.t. . For any nonzero , then 

11.6 Jordan Canonical Forms

Let  be a linear operator on a finite dimensional vector space  over  where .

Def 11.6.2 Let  be a scalar. The Jordan block of order  associated with  is a  matrix

Lemma 11.6.3 Given a Jordan Block , 

Thm 11.6.4 Suppose  can be factorized into linear factors over , then there exists an
ordered basis  for  s.t.  with

where  are (not necessarily distinct) eigenvalues of .

Remark 11.6.5. Let . Suppose  can be factorized into linear factors over ,
applying Thm 11.6.4 to  implies that we can find an invertible matrix  s.t. 

Def 11.6.6 For a linear operator  of finite dimensional vector space , if  an ordered basis 
 s.t.  (see 11.6.4, we say that  has a Jordan canonical form .

Similarly, for a square matrix , if there exists an invertible matrix  s.t. , we say
that  has a Jordan canonical form .

Remark 11.6.8. Jordan canonical forms is unique up to the ordering of the Jordan blocks.

Thm 11.6.9 Suppose a linear operator  of finite dimensional space  has a Jordan
canonical form  (as seen in 11.6.4

W T V dim(W) ≥ 1 T

T |W

W T V mT |W (x) = cT |W (x)

A n × n cA−1(x) = xn[cA(0)]−1cA(1/x)

mA−1(x) = xk[mA(0)]−1mA(1/x) k = deg(mA(x))

p(x) q(x) F gcd(p(x), q(x)) = 1

a(x), b(x) a(x)p(x) + b(x)q(x) = 1 v ∈ Ker(p(T ))

q(T )(v) ≠ 0

T V F dim(V ) ≥ 1

λ t λ t × t

Jt(λ) =

⎛⎜⎝λ 1 0
λ 1

⋱ ⋱

0 ⋱ 1
λ

⎞⎟⎠J = Jt(λ) cJ(x) = mJ(x) = (x − λ)t

cT (x) F

B V [T ]B = J

J =

⎛⎜⎝Jt1(λ1) 0
Jt2(λ2)

⋱

0 Jtm(λm)

⎞⎟⎠λ1,λ2, …λm T

A ∈ Mn×n(F) cA(x) F

T = LA A ∈ Mn×n(F)

P −1AP = J

T V ∃

B [T ]B = J T J

A P P −1AP = J

A J

T V

J



 

  is the least common multiple of 
 For every eigenvalue  of ,  is the total number of Jordan blocks associated

with  in the matrix .

12 Inner Product Spaces
In this chapter, we only focus on real and complex vector spaces.

Notation 12.1.2 Let  be a complex matrix. We use  to denote the conjugate of . Define
the  as the conjugate transpose of . Then

 
 
 

Def 12.1.3 Let  be a vector space over . An inner product on  is a mapping which
assigns to each ordered pair of vectors  a scalar  s.t. the following axioms
are satisfied:

 For all , 
 For all , 
 For all  and ,  (we can derive that )
  and for all nonzero , . In particular 

Def 12.1.5 A vector space  equipped with an inner product is called an inner product space

The usual inner product on  is defined as 
Consider the vector space  the set of continuous function on the closed interval 

, then an inner product on  is 

Let  be the set of all real infinite sequences  s.t.  converges, then an inner

product is . This space is known as the -space

12.2 Norms and Distances

Def 12.2.2 Let  be an inner product space

 For , the norm (or length) of  is defined to be 
 For , the distance between  and  is 

Thm 12.2.4 Let  be an inner product space over 

 , and for any nonzero , 
 For any  and , 
 Cauchy-Schwarz Ineq) For any , 
 Triangle Ineq) For any , 

cT (x) =
m

∏
i=1

(x − λi)ti

mT (x) {(x − λi)ti ∣ i = 1, 2, … ,m}

λ T dim(Eλ(T ))

λ J

A A
–

A

A∗ = AT
–

A

(A + B)∗ = A∗ + B∗

(AC)∗ = C ∗A∗

(cA)∗ = –cA∗

V F V

u, v ∈ V ⟨u, v⟩ ∈ F

u, v ∈ V ⟨u, v⟩ = ⟨v,u⟩
–

u, v,w ∈ V ⟨u + v,w⟩ = ⟨u,w⟩ + ⟨v,w⟩

c ∈ F u, v ∈ V ⟨cu, v⟩ = c⟨u, v⟩ ⟨u, cv⟩ = –c⟨u, v⟩

⟨0, 0⟩ = 0 u ∈ V ⟨u,u⟩ > 0 ⟨0,u⟩ = 0

V

Cn uv∗

C([a, b])

[a, b] C([a, b]) ⟨f, g⟩ = 1
b−a

b

∫
a

f(t)g(t)dt

V (an)
∞
∑
n=1

a2
n

⟨(an), (bn)⟩ =
∞
∑
n=1

anbn l2

V

u ∈ V u ∥u∥ = √⟨u,u⟩

u, v ∈ V u v d(u, v) = ∥u − v∥

V F

∥0∥ = 0 u ∈ V ∥u∥ > 0

c ∈ F u ∈ V ∥cu∥ = |c|∥u∥

u, v ∈ V |⟨u, v⟩| ≤ ∥u∥∥v∥

u, v ∈ V ∥u + v∥ ≤ ∥u∥ + ∥v∥



12.3 Orthogonal and Orthonormal Bases

Discussion 12.3.1.  and  are perpendicular to each other iff .

Def 12.3.2 Let  be an inner product space

 2 vectors  are orthogonal to each other if 
 Let  be a subspace of . A vector  is orthogonal (or perpendicular) to  if  is

orthogonal to all vectors in .
 A subset  of  is orthogonal if the vectors in  are pairwise orthogonal.
 A subset  of  is orthonormal if  is orthogonal and all vectors in  are unit vectors

Lemma 12.3.3 Let  be an inner product space over 

 Let  where . For ,  is orthogonal to  iff  is orthogonal to every
vectors in .

 If  is an orthogonal set of nonzero vectors from , then  is always linearly independent
 Suppose  is finite dimensional where . Let  be an ordered orthonormal basis

for . Then 

Note: if , then 

Remark 12.3.4

 Suppose  is a finite dimensional inner product space. To determine whether a set  of
nonzero vectors from  is an orthogonal (orthonormal) basis for V, we only need to check
that (1  is orthogonal (orthonormal) and (2 

 By Lemma 12.3.3.3, a finite dimensional real inner product space is essentially the same
as the Euclidean space

Thm 12.3.6 Let  be a finite dimensional inner product space. If  is an
orthonormal basis for , then for any vector , .

Thm 12.3.7 Gram-Schmidt Process). Suppose  is a basis for a finite
dimensional inner product space . Let

Then  is an orthogonal basis for .

12.4 Orthogonal Complements & Projections

Let  be an inner product space and  a subspace of .

Def 12.4.1 The orthogonal complement of  is defined to be the set 

Thm 12.4.3

u V ⟨u, v⟩ = 0

V

u, v ∈ V ⟨u, v⟩ = 0

W V u W u

W

B V B

B V B B

V F

W = span(B) B ⊆ V u ∈ V u W u

B

B V B

V dim(V ) ≥ 1 B

V ⟨u, v⟩ = (u)B((v)B)∗ = ([u]B)T [v]B
–

F = R ⟨u, v⟩ = (u)B ⋅ (v)B

V B

V

B |B| = dim(V )

V B = {w1,w2, … ,wn}

V u ∈ V u = ⟨u,w1⟩w1 + ⟨u,w2⟩w2 + ⋯ + ⟨u,wn⟩wn

{u1,u2, … ,un}

V

v1 = u1

v2 = u2 − ⟨u2,v1⟩

⟨v1,v1⟩
v1

⋮

vn = un − ⟨un,v1⟩

⟨v1,v1⟩
v1 − ⟨un,v2⟩

⟨v2,v2⟩
v2 − ⋯ − ⟨un,vn−1⟩

⟨vn−1,vn−1⟩
vn−1

{v1, v2, … , vn} V

V W V

W

W ⊥ = {v ∈ V ∣ ⟨v,u⟩ = 0 ∀u ∈ W} ⊆ V



  is a subspace of 
 , i.e.  is a direct sum
 If  is finite dimensional, then 
 If  is finite dimensional, then dim(V  dim( ) + dim( )

Thm 12.4.6

 .
 If  is finite dimensional, then 

Def 12.4.8 Suppose , i.e. every  can be uniquely expressed as 
where  and . The vector w is called the orthogonal projection of  onto 
and is denoted by 

Prop 12.4.9. The mapping  is a linear operator and is called the orthogonal
projection of  onto .

Thm 12.4.11 Let  be finite dimensional. If  is an orthonormal basis for 
, then for any vector ,  and 

Thm 12.4.13 Best Approximation) Suppose . Then for any , 
 for all , i.e.  is the best approximation of  in .

12.5 Adjoints of Linear Operators
Let  be an inner product space over  and let  be a linear operator on 

Def 12.5.1 A linear operator  is called the adjoint of  if  for all 

Note:

 the classical adjoint of a matrix is a completely different concept.
 ,  and  are its own adjoint.
 We can derive that 

Thm 12.5.4

 The adjoint of  is unique if it exists
 Suppose  is finite dimensional where 

  always exists
 If  is an ordered orthonormal basis for , then 
 rank(T  rank( ) and nullity(T  nullity( )

Prop 12.5.7 Let  or . Suppose  and  are linear operators on  s.t.  and  exists.
Then

 
 for any , 
 
 

W ⊥ V

W ∩ W ⊥ = {0} W + W ⊥

W V = W ⊕ W ⊥

V W W ⊥

W ⊆ (W ⊥)⊥

W W = (W ⊥)⊥

V = W ⊕ W ⊥ u ∈ V u = w + w′

w ∈ W w′ ∈ W ⊥ u W

ProjW (u)

ProjW : V → V

V W

W B = {w1,w2, … ,wk}

W u ∈ V ProjW (u) = ⟨u,w1⟩w1 + ⟨u,w2⟩w2 + ⋯ + ⟨u,wk⟩wk

ProjW ⊥(u) = u − ProjW (u)

V = W ⊕ W ⊥ u ∈ V

d(u, ProjW (u)) ≤ d(u,w) w ∈ W ProjW (u) u W

V F T V

T ∗ T ⟨T (u), v⟩ = ⟨u,T ∗(v)⟩ u, v ∈ V

IV 0V LA

⟨u,T (v)⟩ = ⟨T ∗(u), v⟩

T

V dim(V ) ≥ 1

T ∗

B V [T ∗]B = ([T ]B)∗

T ∗ T ∗

F = R C S T V S ∗ T ∗

(S + T )∗ = S ∗ + T ∗

c ∈ F (cT )∗ = c̄T ∗

(S ∘ T )∗ = T ∗ ∘ S ∗

(T ∗)∗ = T



 if  is a subspace of  that is both - and - invariant, then .

Def 12.5.8 Let  or .

 Suppose  exists,  is invertible and , i.e. 
 If , then  is called a unitary operator
 If , then  is called a orthogonal operator

 Let  be an invertible matrix over  s.t. , i.e. 
 If , then  is called a unitary matrix
 If , then  is called a orthogonal matrix (only real square matrices)

An orthogonal matrix is also a unitary matrix.

Prop 12.5.9 Let  be finite dimensional where . Take any ordered orthonormal
basis  for . If  (or ), then  is unitary (orthogonal) iff  is a unitary (orthogonal)
matrix

Thm 12.5.11 Let  be finite dimensional where . The following are equivalent

  is unitary (when ) or orthogonal (when )
 For all , 
 For all , 
 There exists an orthonormal basis  for , where  s.t. 

 is also orthonormal.

Thm 12.5.14 Let  be an  complex matrix. Suppose  is equipped with the usual inner
product. The following statements are equivalent

  is unitary
 The rows of  form an orthonormal basis for 
 The columns of  form an orthonormal basis for 

Thm 12.5.15 Let  be a complex finite dimensional inner product space where . If 
 and  are ordered orthonormal bases for , then the transition matrix from  to  is a

unitary matrix, i.e. .

PYP
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Given , then  is a solution to  iff  is the orthogonal
projection of  onto .

12.6 Unitary and Orthogonal Diagonalization
Let  an inner product space over  and let  be a linear operator on 

Def 12.6.1 Suppose  exists.

  is called a self-adjoint operator if 
  is called a normal operator if 

W V T T ∗ (T |W )∗ = T ∗|W

F = R C

T ∗ T T −1 = T ∗ T ∘ T ∗ = T ∗ ∘ T = IV

F = C T

F = R T

A F A−1 = A∗ AA∗ = A∗A = I

F = C A

F = R A

V dim(V ) ≥ 1

B V F = C R T [T ]B

V dim(V ) ≥ 1

T F = C F = R

u, v ∈ V ⟨T (u),T (v)⟩ = ⟨u, v⟩

u ∈ V ∥T (u)∥ = ∥u∥

{w1,w2, … ,wn} V n = dim(V )

{T (w1),T (w2), … ,T (wn)}

A n × n Cn

A

A Cn

A Cn

V dim(V ) ≥ 1

B C V B C

[IV ]B,C = ([IV ]C,B)−1 = ([IV ]C,B)∗

Ker(T ∗ ∘ T ) = Ker(T )

b ∈ V x = u (T ∗ ∘ T ) = T ∗(b) T (u)

b R(T )

V F T V

T ∗

T T = T ∗

T T ∘ T ∗ = T ∗ ∘ T



Let  be a complex square matrix.

  is called a Hermitian matrix if 
  is called a normal matrix if 

Remark:

Normal operator is similar to unitary/orthogonal operator except that it doesnt need to be
identity matrix)
Self-adjoint operator / Hermitian matrix is equal to symmetric matrices under 
All self-adjoint operators, orthogonal operators and unitary operators are normal.
All Hermitian matrices, real symmetric matrices, unitary matrices and orthogonal matrices
are normal.

Prop 12.6.2 Let  be finite dimensional with . Take an ordered orthonormal basis 
 for  and let .

 If  (or ), then  is self-adjoint iff  is a Hermitian (symmetric) matrix.
  is normal iff  is a normal matrix

Lemma 12.6.4 Suppose  or  and  a normal operator on .

 For all , 
 For any , the linear operator  is normal
 If  is an eigenvector of  associated with , then  is an eigenvector of  associated

with 
 If  and  are eigenvector of  associated with  and , respectively, where , then 

and  are orthogonal.

Remark 12.6.5. Lemma 12.6.4 holds if we replace  with  (equipped with the usual inner
product) and  by an  normal matrix .

Def 12.6.7 Suppose  (or ).

 Suppose there exists an ordered orthonormal basis  for  s.t.  is a diagonal matrix,
then  is called unitarily (orthogonally) diagonalizable

 A complex (real) square matrix  is called unitarily (orthogonally) diagonalizable if
there exists a unitary (orthogonal) matrix  s.t.  is a diagonal matrix.

Thm 12.6.9 && Thm 12.6.12

 Let  be a complex (real) finite dimensional inner product space where . A
linear operator  on  is unitarily (orthogonally) diagonalizable if and only if  is normal
(self-adjoint).

 A complex (real) square matrix  is unitarily (orthogonally) diagonalizable if and only if 
is normal (symmetric).

To find an ordered orthonormal basis  so that the matrix  is a diagonal matrix, we just
union the bases of all eigenspaces of  where  is any orthonormal basis for  and
normalize each bases.

Tut 10 Q5.

A

A A = A∗

A AA∗ = A∗A

R

V dim(V ) ≥ 1

B V A = [T ]B

F = C R T A

T A

F = R C T V

u, v ∈ V ⟨T (u),T (v)⟩ = ⟨T ∗(u),T ∗(v)⟩

c ∈ F T − cIV

u T λ u T ∗

λ̄

u v T λ μ λ ≠ μ u

v

V Cn

T n × n A

F = C R

B V [T ]B
T

A

P P ∗AP

V dim(V ) ≥ 1

T V T

A A

B [T ]B
[T ]C C V



 is self-adjoint iff all its eigenvalues are real.
A linear operator  is positive definite if  is self-adjoint and .  is positive
definite iff all its eigenvalues are (nonzero) positive real numbers.
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If  is an invertible linear operator, then  is unitarily diagonalizable and all its
eigenvalues are nonzero real positive numbers.

T

P P ⟨P(u),u⟩ > 0 P

T T ∗ ∘ T


