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Chapter 1
Thm 1.1.1  is an irrational number

Thm 1.2.1 Well-Ordering Property of ) Every nonempty subset  of  has a least
element, i.e.  s.t.  for all 

Thm 1.2.4 General mathematical Induction:
Let . Suppose that

  is true; and
 for each natural number  is true  is true.

Then  is true for all natural numbers .

Thm 1.3.1 Algebraic properties of 

 The binary operation addition satisfies Commutativity (A1, Associativity (A2,
Existence of zero element (A3, Existence of inverse (A4

 The binary operation multiplication satisfies Commutativity (M1, Associativity
M2, Existence of zero element (M3, Existence of inverse (M4

 D Distributivity of multiplication over addition: .

Because of the properties (A1  A4, M1  M4, and (D, we say that  forms
a field.

Remark:  forms a field, but  and  do not.

Thm 1.3.2. Let 

 Uniqueness of additive inverse). 
 Uniqueness of multiplicative inverse). 
 
 
 
 
 Cancellative property) 

Thm 1.3.3 Order Properties of ). Let . A binary relation  on  satisfies

 O1 
 O2 

√2

N S N

∃m ∈ S m ≤ n n ∈ S

n0 ∈ N

P(no)

k ≥ n0,P(k) ⟶ P(k + 1)

P(n) n ≥ n0

R

a × (b + c) = a × b + a × c

(R, +, ⋅)

Q Z N

a, b, c ∈ R

a + b = 0 → b = −a

((a ≠ 0) ∧ (a ⋅ b = 1)) → b = 1
a

a + b = b → a = 0

(b ≠ 0 ∧ a ⋅ b = b) → a = 1

a ⋅ 0 = 0

a ⋅ b = 0 → a = 0 ∨ b = 0

(a ≠ 0 ∧ (a ⋅ b = a ⋅ c)) → b = c

R a, b, c, d ∈ R > R

a > b → a + c > b + c

((a > 0) ∧ (b > 0)) → a ⋅ b > 0



 O3 Trichotomy Property). Exactly one of the following holds: 

 O4 Transitive Property). 

Thm 1.3.4. Let , then:

 . In particular .
 Exactly one of the following holds: 
 If  and , then . If  and , then 
 If  and , then 

Thm 1.3.6.

 If  and , then 
 
 If , then .
 If , then 

Thm 1.3.7 If  s.t.  for every positive number , then .

Remark. If  s.t.  for every , then .

Bernoulli Ineq If , then 

Proof: Usual induction

AM/GM/HM Proof: Forward-backward induction.

Thm 1.6.1 Properties of absolute value). For all 

 ,  and 
 
 
 
 
 If , then 
 

Thm 1.6.2 Triangle Ineq).

.

2 The Completeness of Real Numbers
2.1 Boundedness

a > b, a = b, b > a

((a > b) ∧ (b > c)) → a > c

a, b, c ∈ R

a > b ⇔ a − b > 0 c < 0 ⇔ −c > 0

a > 0, a = 0, b > 0

a > b c > 0 c ⋅ a > c ⋅ b a > b c < 0 c ⋅ a < c ⋅ b

a ≥ b b ≥ a a = b

a ∈ R a ≠ 0 a
2 > 0

1 > 0

n ∈ N n > 0

a > 0 1
a

> 0

a ∈ R 0 ≤ a < ϵ ϵ a = 0

a, b ∈ R a − ϵ ≤ b ϵ > 0 a ≤ b

x ≥ −1 (1 + x)n ≥ 1 + nx ∀n ∈ N

a, b, c ∈ R

|a| ≥ 0 a ≤ |a| −a ≤ |a|

|a| = 0⟺ a = 0

| − a| = |a|

|ab| = |a| ⋅ |b|

|a|2 = a2

c ≥ 0 |a| ≤ c⟺ −c ≤ a ≤ c

−|a| ≤ a ≤ |a|

|a| − |b| ≤ |a| − |b| ≤ |a ± b| ≤ |a| + |b|∣ ∣



Definition 2.1.1. A non-empty set of real numbers  is said to be bounded above if
there exists some  such that

Definition 2.1.3. A non-empty set is said to be bounded if it is bounded above and
bounded below.

Remarks: Upper bounds and lower bounds are not unique.

2.2 Maximum & Minimum

The maximum of a non-empty set of real numbers  is the unique upper bound 
 that satisfies .

2.3 Supremum & Infimum

The supremum of a non-empty set of real numbers  is the unique i) upper
bound  that satisfies the property that ii) if  is an upper bound of , then 
.

Lemma 2.3.2.  s.t. .

Remark: If  has a maximum, then sup S  max S.

The infimum of a non-empty set of real numbers  is the unique i) lower bound 
 that satisfies the property that ii) if  is an lower bound of , then .

Lemma 2.3.6.  s.t. .

2.3.7 Completeness Property of 

Every non-empty subset of  which is bounded above (below) has a supremum
(infimum) in .

2.4 Corollary of the completeness property

Thm 2.4.1 Archimedean property of ) For any , there exists  s.t. .

Equivalently, we can say  is not bounded above in 

Corollary: . In particular if , then there exists  s.t. 
.

Thm 2.4.5 Existence of the positive k-th root of a positive real number). Let 
. Then there exists a unique, positive real number  s.t. .

Thm 2.4.6 Density Theorem) For any  s.t. , there exists a rational
number  s.t. .

S ⊆ R

M ∈ R

x ≤ M ∀x ∈ S

S ⊆ R

M M ∈ S

S ⊆ R

M M ′ S M ′ ≥ M

M = sup S⟺ ∀ϵ > 0, ∃xϵ ∈ S xϵ > M − ϵ

S

S ⊆ R

m m′ S m′ ≤ m

M = inf S⟺ ∀ϵ > 0, ∃xϵ ∈ S xϵ < m + ϵ

R

R

R

R x ∈ R nx ∈ N x < nx

N R

inf{ 1
n

: n ∈ N} = 0 ϵ > 0 nϵ ∈ N

0 < 1
nϵ

< ϵ

c > 0, k ∈ N a ak = c

x, y ∈ R x < y

q ∈ Q x < q < y



Proof: consequence of Archimedean property →  s.t. .

Corollary Let  and , then sup .

Def 2.4.9. A subset D of  is said to be dense in  if for any  with , 

Fact:  and  are dense in .

2.5 More on Intervals

Definition. An interval is a subset  of  s.t. if  and , then .

3 Sequences
3.1 Preliminary definitions

Definition. a sequence in  is a real-valued function .

Definition. Let  and . The -neighborhood of  is the set .

 Definition.  is the limit of  (or  converges to ) if for every , there
exists  s.t.  for all .

Thm 3.1.1 If  converges, then it has exactly one limit.

3.2 Limit Theorems

NOTE Unless specified otherwise, all limits in this section are defined for .

Definition. A sequence  is said to be bounded if there exists  s.t. 
for all .

Thm 3.2.1 Every convergent sequence is bounded.

The reverse (see Thm 3.3.1.

Thm 3.2.3 Squeeze Thm) If  for all  and , then 
.

Thm 3.2.4. If , then .

3.2.11 List of limits of some standard sequences.

For a fixed number , we have .
For a fixed number , we have .

 → proven in Ex 3.3.5
 if  and .

∃ n y − x > 1
n

α ∈ R E = {x ∈ Q : x < α} ⊆ Q E = α

R R a, b ∈ R a < b

D ∩ (a, b) ≠ ∅

R ∖ Q Q R

I R x < t < y x, y ∈ I t ∈ I

R X : N → R

a ∈ R ϵ > 0 ϵ a (a − ϵ, a + ϵ)

(ϵ − K) x (xn) (xn) x ϵ > 0

K = K(ϵ) ∈ N |xn − x| < ϵ n ≥ K

(xn)

n → ∞

(xn) M > 0 |xn| ≤ M

n ∈ N

xn ≤ yn ≤ zn n ≥ K0 lim xn = lim zn = a

lim yn = a

|xn| → 0 xn → 0

|b| < 1 lim bn = 0

c > 0 lim c
1
n = 1

lim n
1
n = 1

lim (1 + 1
n
)n

= e

nk << nl << an << bn << n! k < l 1 < a < b



If  and  converges, taking the operations  (only if  and 
),  and the inequality signs  and  under limit preserves the

convergence.

3.3 Monotone Sequences

Definition. We say that the sequence  is

 increasing if 
 decreasing if 
 monotone if it is either increasing or decreasing.

Thm 3.3.1 Monotone Convergence Theorem) If  is monotone and bounded,
then  converges. In particular  equals to  if  is increasing,
or  if  is decreasing.

3.4 Subsequences

Definition. Let  be a sequence and let  be a strictly
increasing sequence of natural numbers. Then the sequence  is called a
subsequence of 

Remark: If  is a subsequence of , then .

Thm 3.4.1. If  converges to , then any subsequence  also converges to .

Corollary 3.4.2. If  has a divergent subsequence, then  diverges.
Corollary 3.4.3. If  has two convergent subsequences whose limits are not equal,
then  diverges.

Thm 3.4.4 Monotone Subsequence Theorem) Every sequence has a monotone
subsequence

Thm 3.4.5 Bolzano-Weierstrass Theorem) Every bounded sequence has a
convergent subsequence.

3.5 Lim sup and lim inf

Definition. Let  be a sequence.  is called the subsequential limit of  if 
 has a subsequence which converges to .

Definition. Let  be the set of all subsequential limits of .

Definition. Let  be a bounded sequence. We know from Bolzano-Weierstrass
Theorem, that  is non-empty and from Thm 3.2.11 that  is bounded.

 
 .

(xn) (yn) +, −, ×, ÷ yn ≠ 0

lim yn ≠ 0 | |, √ ≤ ≥

(xn)

x1 ≤ x2 ≤ ⋯ ≤ xn ≤ ⋯

x1 ≥ x2 ≥ ⋯ ≥ xn ≥ ⋯

(xn)

(xn) lim xn sup{xn : n ∈ N} (xn)

inf{xn : n ∈ N} (xn)

(xn) n1 < n2 < ⋯ < nk < ⋯

(xnk
)

(xn)

(yk) = (xnk
) (xn) nk ≥ k

(xn) x (xnk
) x

(xn) (xn)

(xn)

(xn)

(xn) x ∈ R (xn)

(xn) x

S(xn) (xn)

(xn)

S(xn) S(xn)

lim sup xn := sup S(xn)

lim inf xn := inf S(xn)



Thm 3.5.1 Let  be a bounded sequence and let .

 , there are at most finitely many 's such that . Equivalently, 
, exists  s.t.  for all .

 , there are infinitely many 's such that . Equivalently, 
exists a subsequence  of  s.t.  for all .

Thm 3.5.2 Let  be a bounded sequence and let .

 , there are at most finitely many 's such that . Equivalently, 
, exists  s.t.  for all .

 , there are infinitely many 's such that . Equivalently, 
exists a subsequence  of  s.t.  for all .

Thm 3.5.3 Let  be a bounded sequence. Then  converges (to ) iff 
.

Thm 3.5.4. Let  and  be bounded sequences s.t.  for all . Then 
 and .

Thm 3.5.5 Alternative definition of lim sup). Let  be a bounded sequence. Let 
. Then the sequence  is decreasing and bounded, and 

.

3.6 Cauchy Criterion

Definition. A sequence  is called a Cauchy sequence if for every , there
exists  s.t.  for all .

Thm 3.6.1 Every convergent sequence is Cauchy.

Thm 3.6.2 Every Cauchy sequence is bounded.

Thm 3.6.3 Cauchy Criterion) Every Cauchy sequence is convergent.

A sequence  is called a contractive sequence if there exists some constant 
, s.t.  for all .

Thm 3.6.4 Every contractive sequence is Cauchy.

3.7 Properly divergent sequences

(  Definition. We say that a sequence  tends to  if for every , there
exists  s.t.  for all .

Similar definition (change signs) for tending to .

Thm 3.7.1 If a sequence  is increasing and not bounded above, then .

(xn) M = lim sup xn

∀ϵ > 0 n xn ≥ M + ϵ

∀ϵ > 0 K = K(ϵ) ∈ N xn < M + ϵ n ≥ K

∀ϵ > 0 n xn > M − ϵ ∀ϵ > 0

(xnk
) (xn) xnk

> M − ϵ k ∈ N

(xn) m = lim inf xn

∀ϵ > 0 n xn ≤ m − ϵ

∀ϵ > 0 K = K(ϵ) ∈ N xn > m − ϵ n ≥ K

∀ϵ > 0 n xn < m + ϵ ∀ϵ > 0

(xnk
) (xn) xnk

< m + ϵ k ∈ N

(xn) (xn) x

lim sup xn = lim inf xn = x

(xn) (yn) xn ≤ yn n

lim sup xn ≤ lim sup yn lim inf xn ≤ lim inf yn

(xn)

yn = sup{xk : k ≥ n} , ∀n ∈ N (yn)

lim sup xn = lim yn

(xn) ϵ > 0

K = K(ϵ) ∈ N |xn − xm| < ϵ n > m ≥ K

(xn)

0 < C < 1 |xn+2 − xn+1| ≤ C|xn+1 − xn| n ∈ N

M − K (xn) ∞ M > 0

K = K(M) ∈ N xn > M n ≥ K

−∞

(xn) xn → ∞



Definition. We call a sequence  properly divergent if either  or .

Bartle, Thm 3.6.3 A monotone sequence of real numbers is properly divergent iff it is
unbounded.

Bartle, Thm 3.6.4 Let  and  be 2 sequences of real numbers s.t.  for all
. Then if , then . If , then .

Bartle, Thm 3.6.5 Let  and  be 2 sequences of real numbers s.t.  for
some . We have  iff .

Comparison of properly divergent sequences

Let  and  be two sequences of positive numbers s.t.  and .
We write  or  if .

Remark 3.7.6. the above relation  is transitive.
Remark 3.7.7.  if  and .

Indeterminate forms: .

Tutorial results

Tut 3 Q2 If  converges and  for all , then the sequence 
 converges.

Tut 3 Q4 If  is convergent and  is divergent, then  is divergent.
Tut 3 Q4 If  is divergent and  is convergent (not to 0, then  is
divergent.
Tut 3 Q5 If , then AM, GM, HM converges to .
Example 3.3.5.  is increasing and bounded.
Tut 3 Q6. Similar to Ratio Test). Let  be a sequence of positive real numbers
such that  exists. If , then  converges and .
Tut 4 Q5 . Similarly 

Tut 5 Q3 If  for all , then  iff .
Tut 5 Q4 Let  and  be sequence of positive numbers s.t. .

If , then .
If  is bounded, .

4 Infinite Series
Notation: For the following chapter,  is equivalent  otherwise stated.

4.1 Definition and Examples

(xn) xn → ∞ xn → −∞

(xn) (yn) xn ≤ yn

n ∈ N lim xn = +∞ lim yn = +∞ lim yn = −∞ lim xn = −∞

(xn) (yn) lim xn

yn
= L

L ∈ R, L > 0 lim xn = +∞ lim yn = +∞

(xn) (yn) lim xn = ∞ lim yn = ∞

xn = o(yn) xn << yn lim xn

yn
= 0

<<

nk << nl << an << bn << n! k < l 1 < a < b

∞
∞ , 0

0 , 0 ⋅ ∞, ∞ − ∞, 00, 1∞, ∞0

(an) |an + nbn| < 1 n ∈ N

(bn)

(xn) (yn) (xn + yn)

(xn) (yn) (xnyn)

(xn) → x x

(en) = (1 + 1
n
)n

(xn)

L := lim
xn+1

xn
L < 1 (xn) lim xn = 0

lim sup(xn + yn) ≤ lim sup xn + lim sup yn

lim inf(xn + yn) ≥ lim inf xn + lim inf yn

xn > 0 n lim xn = 0 lim 1
xn

= ∞

(xn) (yn) lim xn

yn
= ∞

yn → ∞ xn → ∞

(xn) yn → 0

∑
∞

∑
n=1



Definition 4.1.1. Given a series , define its -th partial sum as 
.

The sequence  is called the sequence of partial sums of the series .

Definition 4.1.2. Consider the sequence of partial sums  of the series . We say
that the series converges (to ) and write  if and only if 
converges to a number .

Remark 4.1.1. Geometric Series).  converges to  if  and diverges

otherwise.

Thm 4.1.1 Let  and  be two convergent series and let .

 The series  is convergent and equals  + 
 The series  is convergent and equals 

Thm 4.1.2 If  converges, then .

Thm 4.1.3 The n-th term divergence test).

 If  or do not exists, then  diverges.
 If , we can conclude NOTHING about the series 

Thm 4.1.4 Cauchy criterion for series). The series  converges iff for all ,
there exists  s.t.  for all .

4.2 Series with nonnegative terms

Goal: Given a series, test whether the series converges.

Definition 4.2.1. A series  is called an eventually non-negative (positive) series
there exists  s.t.  ( ) for all .

Thm 4.2.1 Let  be an eventually non-negative series. Then  converges iff the
sequence  of partial sums is bounded above.

Remark 4.2.4 (p-series) If , then the -series  converges. If , then
the -series diverges.

Thm 4.2.3 Comparison Test) Consider 2 eventually non-negative series  and 
. Suppose there exists  s.t.  for all . If  converges, then 
 converges.

Remark 4.2.5. When applying comparison test, we try to compare a given series with
either a bigger but convergent series or a smaller but divergent series. The two
standard series often used in comparison tests are the p-series and the geometric
series 

∑ ak n

sn = ∑ ak = a1 + a2 + ⋯ + an

(sn) ∑ ak

(sn) ∑ ak

S ∑ ak = lim sn = S (sn)

S ∈ R

∞

∑
k=1

ark−1 a
1−r |r| < 1

∑ ak ∑ bk c ∈ R

∑(ak + bk) ∑ ak ∑ bk

∑ cak c∑ ak

∑ an lim an = 0

lim an ≠ 0 ∑ an

lim an = 0 ∑ an

∑ an ϵ > 0

K = K(ϵ) ∈ N |an+1 + an+2 + ⋯ am| < ϵ m > n ≥ K

∑ ak

K ∈ N ak ≥ 0 ak > 0 k ≥ K

∑ an ∑ an

(sn)

p > 1 p ∑ 1
np p ≤ 1

p

∑ ak

∑ bk K ∈ N 0 ≤ ak ≤ bk k ≥ K ∑ bk

∑ ak

∑ arn−1



Thm 4.2.5 Limit Comparison Test) Let 2 eventually positive series  and 
and suppose that the limit  exists.

 If , then either both converge or both diverge
 If  and  converges, then  converges.

Intuition:

 The two series resemble finite non-zero multiple of each other
  is smaller than  → similar to comparison test.

Thm 4.2.7 Ratio Test). Let  be an eventually positive series. and suppose that
the limit  exists.

If , the series converges. � Note: can use  as well.
If , the series diverges.
No conclusion if .

Thm 4.2.8 Root Test). Let  be an eventually non-negative series. and suppose
that the  is a bounded sequence. Let .

If , the series converges.
If , the series diverges.
No conclusion if .

4.3 Alternating Series

Definition 4.3.1. An alternating series is a series of the form  or 

Theorem 4.3.1 Alternating Series Test) Let  be an alternating series.
Suppose that  for all ,  is decreasing, and . Then the series is
convergent.

4.4 Absolute and Conditional convergence

For series with both +-ve and -ve terms.

Definition 4.4.1.

 We say that the series  converges absolutely if the series  converges.
 We say that the series  converges conditionally if  converges but 

 diverges.

Theorem 4.4.1 If the series  converges absolutely, then it converges.

Theorem 4.4.2 Every series is either absolutely convergent, conditionally convergent
or divergent.

∑ an ∑ bn

ρ = lim an

bn

ρ > 0

ρ = 0 ∑ bn ∑ an

∑ an ∑ bn

∑ an

ρ = lim an+1

an

ρ < 1 lim sup

ρ > 1

ρ = 1

∑ an

(a
1/n
n ) ρ = lim sup a

1/n
n

ρ < 1

ρ > 1

ρ = 1

∑(−1)k+1ak ∑(−1)kak

∑(−1)kak

an ≥ 0 n (an) lim an = 0

∑ an ∑ |an|

∑ an ∑ an

∑ |an|

∑ an



Dirichlet and Abel Tests

Abel's Lemma. Let  and  be sequences in  and let the partial sums
of  be denoted by  with . If , then 

Dirichlet's Test. If  is a decreasing sequence with  and if the partial
sums  of  are bounded, then the series  is convergent.

Abel's Test. If  is a convergent monotone sequence and the series  is
convergent, then the series  is also convergent.

Tutorial Results

Tut 6 Q2. If  is convergent, the series of its AM is divergent.

5 Limits of Functions
Definition 5.2.1 Let . A real number  is a cluster point of  if for every ,
there exists a point  s.t. .

Remark. A cluster point  of a set  need not be an element of .

Proposition 5.2.1. A real number  is a cluster point of  if and only if there
exists a sequence  in  s.t. .

Definition 5.2.2. (  definition of limit). Let  be a function, where 
 and let  be a cluster point of . We say that  if for every ,

there exists  s.t.  for all  satisfying .

If the limit of  at  does not exist (in ), we say that  diverges at .

Definition:

If , then the -neighborhood of the point  is the set 
.

Define  as the deleted neighborhood of 
.

Remark:

 If  is not a cluster point of , then there exists  s.t. .
 We can rewrite definition 5.2.2 as  iff for any given , there exists 

 s.t. .
 The limit of a function at a cluster point is unique if the limit exists.

X := (xn) Y := (yn) R

∑ yn (sn) s0 = 0 m > n
m

∑
k=n+1

xkyk = (xmsm − xn+1sn) +
m−1

∑
k=n+1

(xk − xk+1)sk

(xn) lim xn = 0

(sn) ∑ yn ∑xnyn

(xn) ∑ yn

∑xnyn

∑ an

∅ ≠ A ⊆ R c A δ > 0

x ∈ A∖{c} 0 < |x − c| < δ

c A A

c ∅ ≠ A ⊆ R

(an) A∖{c} lim an = c

ϵ − δ f : A → R

∅ ≠ A ⊆ R c A lim
x→c

f(x) = L ϵ > 0

δ = δ(ϵ) > 0 |f(x) − L| < ϵ x ∈ A 0 < |x − c| < δ

f x = c R f x = c

h > 0 h a

Vh(a) = {x : |x − a| < h} = (a − h, a + h)

V ∗
h (a) = Vh(a)∖{a} = {x : 0 < |x − a| < h}

a

c A δ > 0 A ∩ V ∗
δ (c) = ∅

lim
x→c

f(x) = L ϵ > 0

δ = δ(ϵ) > 0 f(A ∩ V ∗
δ (c)) ⊆ Vϵ(L)



Theorem 5.2.3. Sequential Criterion for Limits). Let  and let  be a cluster
point of . Suppose that  and . Then the following statements are
equivalent:

 

 For every sequence  in  s.t. , one has 

Theorem 5.2.4 Uniqueness of limits)
If  is a function and  is a cluster point of , the the limit of  at  is
unique if it exists.

Remark 5.2.6 Divergence Criteria). Let  be a function and let  be a cluster
point of . To prove  does not exist ,either:

 Find a sequence  in  s.t. , but the sequence  diverges.
 Find 2 sequences  and  in  s.t.  but 

.

5.3 Limit Theorems

Assume  is a function and  is a cluster point of .

Theorem 5.3.1 If  exists, then there exist constants  s.t.  for

all  satisfying .

Basic Principle 5.3.5 Suppose there exists a deleted neighborhood  (with )
s.t.  for all , then  provided one of these limits

exist.

If  and  exists, applying the operations  (only if  for all 

),  and the inequality signs  and  between the functions is the same as
applying it to their limits.

Theorem 5.3.7. Squeeze Theorem) Let  be three functions and let  be a
cluster point of . Suppose that  for all  satisfying 

 and , then .

Theorem 5.3.8 If  exists and , then exists  s.t.  for all 

 satisfying .

5.4 One sided limits

Definition 5.4.1.

 Let  be a cluster point of . We say that  is the right-hand limit of  at
, denoted by , if for any given , there exists  s.t. 

∅ ≠ A ⊆ R c

A f : A → R L ∈ R

lim
x→c

f(x) = L

(xn) A∖{c} lim xn = c lim f(xn) = L

f : A → R c A f x = c

f : A → R c

A lim
x→c

f(x)

(xn) A∖{c} lim xn = c (f(xn))

(xn) (yn) A∖{c} lim xn = c = lim yn

lim f(xn) ≠ lim f(yn)

f : A → R c A

lim
x→c

f(x) M, δ > 0 |f(x)| ≤ M

x ∈ A 0 < |x − c| < δ

V ∗
h (c) h > 0

f(x) = g(x) x ∈ A ∩ V ∗
h (c) lim

x→c
f(x) = lim

x→c
g(x)

lim
x→c

f(x) lim
x→c

g(x) +, −, ×, ÷ g(x) ≠ 0

x ∈ A | |, √ ≤ ≥

f, g, h c

A f(x) ≤ g(x) ≤ h(x) x ∈ A

0 < |x − c| < δ lim
x→c

f(x) = lim
x→c

h(x) = L lim
x→c

g(x) = L

lim
x→c

f(x) = L L > 0 δ > 0 f(x) > 0

x ∈ A 0 < |x − c| < δ

c A ∩ (c, ∞) L f

c lim
x→c+

f(x) ϵ > 0 δ = δ(ϵ) > 0



 for all  satisfying .
 Let  be a cluster point of . We say that  is the left-hand limit of 

at , denoted by , if for any given , there exists  s.t. 

 for all  satisfying .

Theorem 5.4.2  iff both left-hand limit and right-hand limit exists and is

equal to .

Theorem 5.4.4. Sequential Criterion for right-hand Limits).Suppose that 
and let  be a cluster point of . Then the following statements are equivalent:

 

 For every sequence  in  s.t. , one has 

There is a similar sequential criterion for the left-hand limit.

Note: All limit theorems (squeeze, operations, basic principle 5.3.5 also holds for
one-sided limits.

5.5 Infinite Limits

Definition: We say that  if for every , there exists  s.t

 for all  satisfying .

We have a similar definition for tending to .

Note

There is a similar sequential criterion for the infinite limits, (Theorem 5.2.3), and
infinite one-sided limits (Theorem 5.4.4 with 
We have a stronger statement than Squeeze Theorem, i.e. if  for all 
in domain and , then .

5.6 Limits at infinity

Definition 5.6.1.

 Suppose  is not bounded above. We say that  if for every ,

there exists  s.t.  for all  and .
 Suppose  is not bounded below. We say that  if for every ,

there exists  s.t.  for all  and .

Remark 5.6.2. The concept of the limit of a sequence is a special case of the above
definition (with ).

|f(x) − L| < ϵ x ∈ A c < x < c + δ

c A ∩ (−∞, c) L f

c lim
x→c−

f(x) ϵ > 0 δ = δ(ϵ) > 0

|f(x) − L| < ϵ x ∈ A c − δ < x < c

lim
x→c

f(x) = L

L

f : A → R

c A ∩ (c, ∞)

lim
x→c+

f(x) = L

(xn) A ∩ (c, ∞) lim xn = c lim f(xn) = L

lim
x→c

f(x) = +∞ M > 0 δ = δ(M) > 0

f(x) > M x ∈ A 0 < |x − c| < δ

−∞

L = ∞

f(x) ≥ g(x) x

lim g(x) = ∞ lim f(x) = ∞

A lim
x→∞

f(x) = L ϵ > 0

M = M(ϵ) > 0 |f(x) − L| < ϵ x ∈ A x > M

A lim
x→−∞

f(x) = L ϵ > 0

M = M(ϵ) < 0 |f(x) − L| < ϵ x ∈ A x < M

A = N



Theorem 5.6.3 Sequential Criterion for limit at infinity) Suppose that  and
suppose  is not bounded above. Then the following statements are equivalent:

 

 For every sequence  in  s.t. , one has 

Note: All limit theorems (squeeze, operations, basic principle 5.3.5 also holds for
limits at infinity.

5.7 Infinite limits at infinity

Definition 5.7.1. Suppose  is not bounded above. We say that  if for

every , there exists  s.t.  for all  and .

Note

There is a similar sequential criterion (Theorem 5.6.3 with )

Tutorial Results

Tut 8 Q3 Suppose  and , then .

6 Continuous Functions
Definition 6.1.1. (  definition of continuity). A function  is said to be
continuous at  if for every , there exists  s.t. 

 for all  satisfying .

If  is not continuous at , we say that  is discontinuous at  and  is a
point of discontinuity of .
If  is continuous at every point in , we say that  is continuous on .
If  is not a cluster point of , then  is always continuous at  since there
exists  s.t. 
If the choice of  only depends on , the function is said to be uniformly
continuous

Theorem 6.1.1 Continuity in terms of limits). If  is a cluster point of , then  is
continuous at  iff .

Theorem 6.1.6. Sequential Criterion for Continuity). We have something similar to
Theorem 5.2.3 Sequential criterion for limits) with  and domain of  is .

Summary of common continuous functions

 Polynomials, absolute-value functions, sine and cosine functions are continuous
on .

 nth-root functions are continuous on .

f : A → R

A

lim
x→∞

f(x) = L

(xn) A lim xn = ∞ lim f(xn) = L

A lim
x→∞

f(x) = ∞

M > 0 K = K(M) > 0 f(x) > M x ∈ A x > K

L = ∞

lim
x→a

f(x) = L > 0 lim
x→a

g(x) = ∞ lim
x→a

f(x)g(x) = ∞

ϵ − δ f : A → R

x = a ∈ A ϵ > 0 δ = δ(ϵ, a) > 0

|f(x) − f(a)| < ϵ x ∈ A |x − a| < δ

f a f x = a a

f

f A f A

a ∈ A A f a

δ > 0 A ∩ (a − δ, a + δ) = {a}

δ ϵ

a ∈ A A f

x = a lim
x→a

f(x) = f(a)

L = f(a) (xn) A

R

(0, ∞)



 Rational functions  are continuous everywhere except at the zeros of .
 Floor function is continuous on  (and is discontinuous at each )

Remark Sometimes we can "save" a function which is discontinuous at a point, i.e. if 
 exists but  is not defined, then we can simply define  and the

resulting function will now be continuous at .

6.2 Combinations of continuous functions

Theorem 6.2.1. Let  and let  be continuous functions at . Let 
. Then the functions  and  are all continuous at . If ,

then the function  is also continuous at .

Theorem 6.2.2. Composition of continuous functions is continuous provided the
image of the inner functions fall inside the domain of the outer function.

6.3 Continuous functions on intervals

Definition 6.3.1. A function  is said to be bounded on A if the image  is a
bounded set.

Theorem 6.3.1. Let  be a continuous function on the closed bounded
interval . Then  is bounded on .

Definition 6.3.2. We say that  has an absolute maximum on , denoted , if
there exists  s.t.  for all .

Theorem 6.3.3. Extreme Value Theorem) Suppose that  is a continuous
function on the closed bounded interval . Then  has an absolute maximum and
an absolute minimum on .

Theorem 6.3.5. Intermediate Value Theorem) Suppose that  is a
continuous function on the closed bounded interval . Then for any number 
strictly between  and , there exists  s.t. .

Corollary: We have 

Theorem 6.3.7. A continuous function sends a closed bounded interval onto a closed
bounded interval.

Theorem 6.3.10. Preservation of Intervals) Let  be an interval in  and suppose a
function  is continuous on . Then  is an interval.

6.4 Monotone and Inverse functions on intervals

Definition 6.4.1.

p(x)/q(x) q

R∖Z a ∈ Z

lim
x→a

f(x) = L f(a) f(a) = L

a

A ⊆ R f, g : A → R a ∈ A

k ∈ R f + g, f − g, kf f ⋅ g x = a g(a) ≠ 0

f/g x = a

f : A → R f(A)

f : [a, b] → R

[a, b] f [a, b]

f A max f(A)

y ∈ A f(y) ≥ f(x) x ∈ A

f : [a, b] → R

[a, b] f

[a, b]

f : [a, b] → R

[a, b] L

f(a) f(b) c ∈ (a, b) f(c) = L

[f(a), f(b)] ⊆ f([a, b])

I R

f : I → R I f(I)



  is said to be increasing on A if  and , then . It is
strictly increasing if 

 Similar definition for decreasing.
 A function is (strictly) monotone if it is either (strictly) increasing or (strictly)

decreasing on .

Theorem 6.4.2. A monotone function defined on an interval always has one-sided
limits. Let  be increasing on . If  is not an endpoint of , then

 

 

 

Remark: If  is increasing and discontinuous at , then  and the

difference is called the jump of  at .

Theorem 6.4.6. Continuous Inverse Theorem) Let  be an interval and 
 be a strictly monotone function. If  is continuous on , then its inverse

function  is strictly monotone and continuous on .

Example: the n-th root function is continuous and strictly increasing on .

6.5 Uniform continuity

Definition 6.5.1. Let . A function  is said to be uniformly
continuous on A if for any given , there exists  s.t.  for
any  satisfying .

Remark:

 uniformly continuous on  ⟶ continuous on .
 uniformly continuous on  ⟶ uniformly continuous on any nonempty subset 

of .

Theorem 6.5.3. Sequential criterion for uniform continuity) Let  and let
 be a function. Then the following statements are equivalent:

  is uniformly continuous on .
 For any two sequences  and  in  s.t. , one has 

.

Theorem 6.5.5. Heine-Cantor Theorem) Suppose that  is a continuous
function on the closed bounded interval . Then  is uniformly continuous on .

Lipschitz condition. Let  be a nonempty subset of  and let  be a function
satisfying the Lipschitz condition on : there exists a constant  s.t. 

f x1, x2 ∈ A x1 ≤ x2 f(x1) ≤ f(x2)

f(x1) < f(x2)

A

f : I → R I c ∈ I I

lim
x→c−

f(x) = sup{f(x) : x ∈ I, x < c}

lim
x→c+

f(x) = inf{f(x) : x ∈ I, x > c}

lim
x→c−

f(x) ≤ f(c) ≤ lim
x→c+

f(x)

f c lim
x→c−

f(x) < lim
x→c+

f(x)

f c

I ⊆ R

f : I → R f I

f −1 : f(I) → R f(I)

R

∅ ⊊ A ⊆ R f : A → R

ϵ > 0 δ = δ(ϵ) > 0 |f(x) − f(u)| < ϵ

x, u ∈ A |x − u| < δ

A A

A B

A

∅ ≠ A ⊆ R

f : A → R

f A

(xn) (un) A xn − un → 0

f(xn) − f(un) → 0

f : [a, b] → R

[a, b] f [a, b]

A R f : A → R

A K > 0



 for all . Then  is uniformly continuous on .

Theorem. If  is uniformly continuous on a subset  and if  is a
Cauchy sequence in , then  is a Cauchy sequence in .

Continuous Extension Theorem. A function  is uniformly continuous on the interval 
 iff it can be defined at the endpoints  and  s.t. the extended function is

continuous on .

Tutorial Results

Tut 8 Q8 If  and  then there exist a unique point 
 s.t. .

Tut 9 Q7 Suppose  is continuous and injective on . Then  is
strictly monotone.
Tut 10 Q4 If  is uniformly continuous on an interval  and there is a positive
number  s.t.  for all , then  is uniformly continuous on .
20/21 Sem 1 Q5 If  is a continuous function. Then  is strictly monotone iff  is
injective.

7 Metric Spaces
7.1 Metric Space

Definition 7.1.1. Let . A metric on the set  is a function  that
satisfies

 (Positivity)  for all 
 (Definiteness)  iff 
 (Symmetry)  for all 
 (Triangle inequality)  for all .

A metric space  is a set  together with a metric  on . The metric  is also
called a distance function on .

Remark 7.1.5. Define the Euclidean distance function on  as

for . Then  forms the -dimensional
Eucliean space.

Let  be a metric space, and let . The induced metric  on  is
defined as  for all . Then  is called a metric subspace
of .

|f(x) − f(y)| ≤ K|x − y| x, y ∈ A f A

f : A → R A ⊆ R (xn)

A (f(xn)) R

f

(a, b) a b

[a, b]

0 < C < 1 |f(x) − f(y)| ≤ C|x − y|

a f(a) = a

f : [a, b] → R [a, b] f

f I

k |f(x)| ≥ k x ∈ I 1/f(x) I

f f f

S ≠ ∅ S d : S × S → R

d(x, y) ≥ 0 x, y ∈ S

d(x, y) = 0 x = y

d(x, y) = d(y,x) x, y ∈ S

d(x, y) ≤ d(x, z) + d(z, y) x, y, z ∈ S

(S, d) S d S d

S

R
n

d(x, y) =
n

∑
i=1

(xi − yi)2
⎷x = (x1, … ,xn), y = (y1, … , yn) ∈ R

n (Rn, d) n

(S, d) A ⊆ S dA : A × A → R A

dA(x, y) := d(x, y) x, y ∈ A (A, dA)

(X, d)



Other metrics on 

 

 . → (actually it is supremum)

 (discrete metric)  if  and  otherwise.

Remark: In view of the other metrics in , then we often denote the Euclidean metric
as .

Exercise 7.1.10. We have .

7.2 Neighborhood, Convergence

Definition 7.2.1. For , then the -neighborhood of the point  is the set 
.

Definition 7.2.3. A set  is called a neighborhood of  if  contains an -
neighborhood of  for some .

Definition 7.2.6. Let  be a sequence of points in . Let . The sequence 
is said to converge to  in S (with respect to ) if for every , exists 
s.t.  for all 

Remark:  iff 

7.3 Open Sets, Closed Sets

Let  be a metric space.

Definition 7.3.1. A subset  of  is said to be an open set in  if for each , there
exists a neighborhood  of  s.t. .

Comment: Roughly speaking, an open set is a set whose "boundary points" are all
excluded from the set.

Example: Let  s.t. . Then the open interval  is open.

Theorem 7.3.5. Let  and . Then the r-neighborhood  of  is open in .

Theorem 7.3.7. Open Set Properties) Let  be a metric space

 The empty set  and  are open.
 Let  be a collection of open subsets of , i.e.  is open for each 

. Then  is open.

 Let  be  (finite) open subsets of . Then  is open.

R
n

d1(x, y) :=
n

∑
i=1

|xi − yi|

d∞(x, y) := max
1≤i≤n

|xi − yi|

d(x, y) = 0 x = y d(x, y) = 1

R
n

d2

d∞(x, y) ≤ d2(x, y) ≤ d1(x, y) ≤ n ⋅ d∞(x, y)

ϵ > 0 ϵ c ∈ S

Vϵ(c) = {x ∈ S : d(x, c) < ϵ}

U x U ϵ

x ϵ > 0

(xn) (S, d) x ∈ S (xn)

x d ϵ > 0 K = K(ϵ) ∈ N

xn ∈ Vϵ(x) n ≥ K

lim
n→∞

xn = x lim
n→∞

d(xn,x) = 0

(S, d)

G S S x ∈ G

V x V ⊆ G

a, b ∈ R a < b (a, b)

a ∈ S r > 0 Vr(a) a S

(S, d)

∅ S

{Gλ : λ ∈ Λ} S Gλ

λ ∈ Λ ⋃
λ∈Λ

Gλ

G1,G2, … ,Gn n S
n

⋂
k=1

Gk



Definition 7.3.10. A subset  of  is said to be an closed set in  if the complement 
 is open in .

Remark:  is open in  iff  is closed in .

Example:

The set  is closed in .
Let  s.t. . Then the closed interval  is closed.

Theorem 7.3.15. Closed Set Properties) Let  be a metric space

 The empty set  and  are closed.
 Let  be a collection of closed subsets of , i.e.  is closed for each 

. Then  is closed.

 Let  be  (finite) closed subsets of . Then  is closed.

Theorem 7.3.18. Characterization of Closed Sets) Let . The following
statements are equivalent:

  is closed in .
 Every convergent sequence  has its limit in , i.e. one has .

Some additional definition.

 is neither open nor closed.
A point  is said to be an interior point of  if there is a neighborhood 

 of  s.t. .
A set  is open iff every point of  is an interior point of .
A point  is said to be an boundary point of  if everyneighborhood 
of  contains points in  and points in .
A set  is open iff it does not contain any of its boundary points.
A set  is closed iff it contains all its boundary points.

7.4 Continuity in terms of open sets

Context: Let  and  be metric spaces, and let . Let  be a
function.

Definition 7.4.1. The function  is said to be continuous at a point  if for every 
, there exists  s.t.  for all  satisfying .

Or equivalently: 

Definition 7.4.2. Let  be a function and let . Then the inverse image of 
 under  is given by .

F S S

C(F) := S∖F S

G S S∖G S

V̄ r(a) := {x ∈ S : d(x, a) ≤ r} S

a, b ∈ R a < b [a, b]

(S, d)

∅ S

{Fλ : λ ∈ Λ} S Fλ

λ ∈ Λ ⋂
λ∈Λ

Fλ

F1,F2, … ,Fn n S
n

⋃
k=1

Fk

F ⊆ S

F S

(xn) ⊆ F F lim
n→∞

xn ∈ F

Q

x ∈ R A ⊆ R

V x V ⊆ A

A A A

x ∈ R A ⊆ R V

x A C(A)

A

A

(S1, d1) (S2, d2) A ⊆ S1 f : A → S2

f c ∈ A

ϵ > 0 δ = δ(ϵ, c) > 0 d2(f(x), f(c)) < ϵ x ∈ A d1(x, c) < δ

f(A ∩ Vδ(c)) ⊆ Vϵ(f(c))

f : A → B G ⊆ B

G f f−1(G) := {x ∈ A : f(x) ∈ G} ⊆ A



Remark: We have .

Theorem 7.4.3. Global Continuity Theorem) The following statements are
equivalent:

  is continuous on .
 For every open set , there exists an open set  s.t. 

Corollary 7.4.5. A function  is continuous on  iff the inverse image 
is open in  for every open set  in .

Remark: The above corollary also works if I change the word "open" to "closed".

Theorem 7.4.8. Sequential Criterion for Continuity) The following statements are
equivalent:

  is continuous at .
 For every sequence  in  s.t. , one has .

7.5. Sequential compactness

Let  be a metric space.

Definition 7.5.1. A subset  is said to be bounded if there exists  and 
s.t.  for all .

Definition 7.5.4. A subset  is said to be sequentially compact if every sequence
in  has a convergent subsequence whose limit is in .

Theorem 7.5.6. Suppose a subset  is sequentially compact, then  is closed
and bounded in .

Theorem 7.5.9. Heine-Borel Theorem) Let . Consider the Euclidean -space 
 where  is the Euclidean metric on . Then a subset  is sequentially

compact iff  is closed and bounded in 

Remark: Generalized version of Heine-Cantor Theorem by substituting "closed and
bounded" with "compact".

Theorem 7.5.10. Continuous functions preserve sequentially compact sets.

Theorem 7.5.11. Extreme Value Theorem) Let  be a metric space and let 
 be a sequentially compact set. Suppose  be a continuous (real-

valued) function on . Then there exist  s.t.  for all .

Corollary 7.5.12. EVT can be generalized to higher dimensions .

7.6 Compactness

f(f−1(G)) ⊆ G

f A

G ⊆ S2 H ⊆ S1 f−1(G) = A ∩ H

f : S1 → S2 S1 f−1(G)

S1 G S2

f c

(xn) A xn → c f(xn) → f(c)

(S, d)

A ⊆ S x0 ∈ S M > 0

d(x,x0) ≤ M x ∈ A

A ⊆ S

A A

A ⊆ S A

S

k ∈ N k

(Rk, d2) d2 R
k A ⊆ R

k

A (Rk, d2)

(S, d)

∅ ≠ A ⊆ S f : A → R

A x1,x2 ∈ A f(x1) ≤ f(x) ≤ f(x2) x ∈ A

(Rk, d2)



Definition 7.6.1. Let  be a metric space and let .

 An open cover of  is a collection  of open subsets of  s.t. .

 An open cover  of  is said to have a finite subcover if there exist finitely
many open sets  s.t. .

Definition 7.6.3. A subset  is said to be compact in  if every open cover of 
 has a finite subcover.

Example:

Every finite subset of  is compact
 and  is not compact.

Theorem 7.6.6.  is compact iff  is sequentially compact.

Extending Continuous Inverse Theorem, we have
Theorem. If  is a compact subset of  and  is injective and continuous,
then  is continuous on .

Some results

If  is an open set and  is a closed set, then  is an open set and  is a
closed set.
If  is a closed subset of a compact set  in , then  is compact.
If  and  are compact sets, then  and  is compact.
Let  be a compact set, then  and  exists and belong to .
If  is continuous, then the set  is open; the set 

 and the set  is closed.

Appendix
2.6 Finite and Infinite sets

Definition 2.6.0. Let  be a function. Then,

  is injective if for all , if , then .
  is surjective if , i.e. for every , there exists  s.t. .
  is bijective if  is both injective and surjective.

Definition 2.6.1.

 A set is finite, if it have  elements. A set  have  elements iff there is a
bijection from  onto the set  (or from the set  to ).

(S, d) A ⊆ S

A T S ⋃
G∈T

G ⊇ A

T A

G1,G2, … ,Gn ∈ T G1 ∪ G2 ∪ ⋯ ∪ Gn ⊇ A

A ⊆ S (S, d)

A

R

[0, ∞) (0, 1)

A A

K R f : K → R

f−1 f(K)

G F G∖F F∖G

F K R F

K1 K2 K1 ∪ K2 K1 ∩ K2

K ≠ ∅ inf K supK K

f : R → R {x ∈ R : f(x) < α}

{x ∈ R : f(x) ≤ α} {x ∈ R : f(x) = k}

f : A → B

f x1,x2 ∈ A f(x1) = f(x2) x1 = x2

f f(A) = B y ∈ B x ∈ A f(x) = y

f f

n ≥ 0 S n > 0

S {1, 2, … ,n} {1, 2, … ,n} S



 A set  is said to be denumerable (or countably infinite) if there exists a
surjection of  onto  (or an injection from  onto ).

  is countable if it is finite or countably infinite.
 A set is infinite if it is not finite. A set is uncountable if it is not countable.

Uniqueness Thm: If  is a finite set, then the numbers of elements in  is a unique
number in . Moreover, the set  is an infinite set.

Lemma 2.6.4. Any subset  of  is countable.

The set ,  and  are denumerable. The interval  is uncountable.

Prop 2.6.5. Let 

 If  is finite, then  is finite.
 If  is countable, then  is countable.

Prop 2.6.6. If  is a countable set for each , then the union  is
countable.

Cantor's Thm: If  is any set, then there is no surjection of  onto the set  of all
subsets of 

4.6 Rearrangements of series

Definition. A series  is called a rearrangement of a series  if there is a
bijection  s.t.  for all .

Theorem 4.6.2 Rearrangement Theorem). Let  be an absolutely convergent
series. Then, any rearragement  of  also converges and we have .

Comment: Riemann showed that a conditionally convergent series can be rearranged
s.t.  for any arbitrary constant 

4.7 Why is  irrational?

Theorem 4.7.1

  � Proof: Using 

 For each , 

Theorem 4.7.2 The Euler number  is irrational.

6.6 Applications of the notion "uniform continuity" to approximate
continuous functions

Definition 6.6.1. Let  be an interval. Then a function  is said to be a step
function if  can be partitioned into a union of finite number of subintervals s.t. 

S

N S S N

S

S S

N N

A N

N × N Z Q I = [0, 1]

A ⊆ B

B A

B A

Am m ∈ N A := ⋃∞
m=1 Am

A A π(A)

A

∑ bn ∑ an

f : N → N bn = af(n) n ∈ N

∑ ak

∑ bk ∑ ak ∑ bk = ∑ ak

∑ an = c c

e

e = ∑ 1
n!

lim (1 + 1
n

)n
= e

n ∈ N e −
n

∑
j=0

1
j!

≤ 1
n(n!)

e

I ⊆ R s : I → R

I s



restricts to a constant function on each of these subintervals.

Theorem 6.6.2. Let  be continuous on the closed bounded interval .
Then for any given , there exists a step function  s.t. 
for all .

Definition 6.6.3. A function  is piecewise linear on  if the interval 
can be partitioned into a finite number of subintervals s.t. the restriction of  to each
subinterval is a linear function on the subinterval.

Theorem 6.6.4. Let  be continuous on the closed bounded interval .
Then for any given , there exists a continuous piecewise linear function 

 s.t.  for all .

7.7 Connectedness

Definition 7.7.1. Let  be a metric space.

 A subset  of  is disconnected if there exist open subsets  of  s.t. 
, ,  and .

 A subset  of  is connected if  is not disconnected.

Theorem 7.7.6. Consider the metric space  where  is the usual metric on . A
subset  of  is connected iff  is an interval.

Theorem 7.7.7. Continuous functions preserve connected sets.

Theorem 7.7.9. Intermediate Value Theorem). Let  be a metric space, and let 
 be a connected subset of . Suppose a function  is continuous on . If

 and , then there exists  s.t. .

f : [a, b] → R [a, b]

ϵ > 0 sϵ : [a, b] → R |f(x) − sϵ(x)| < ϵ

x ∈ [a, b]

g : [a, b] → R [a, b] [a, b]

g

f : [a, b] → R [a, b]

ϵ > 0

gϵ : [a, b] → R |f(x) − gϵ(x)| < ϵ x ∈ [a, b]

(S, d)

A S G,H S

G ∩ A ≠ ∅ H ∩ A ≠ ∅ G ∩ H ∩ A = ∅ A ⊆ G ∪ H

A S A

(R, d) d R

A R A

(S, d)

A ≠ ∅ S f : A → R A

a, b ∈ A f(a) < L < f(b) c ∈ A f(c) = L


