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1. Intro to LP
LP is a technique for minimizing (or maximizing) linear cost function under finitely
many equality and inequality constraints.

1.1 Glossary

 is the given cost vector. We call  the objective
function. Vector  corresponds to direction of increasing cost.
A decision variable  is called free if there is no restriction on sign of 
A vector  satisfying all constraints is a feasible solution
The feasible set is the set of all feasible solutions.
A feasible solution  that minimizes the objective function is an optimal
solution, and its corresponding cost  is called the optimal cost / optimal
objective value.

By convention: For a minimization (maximization) problem, the optimal cost (profit)
for an unbounded feasible region is  ( ) and for infeasible region is  ( )

LP solutions

An LP can have

 A unique optimal solution
 Multiple optimal solutions (bounded or unbounded), but only 1 finite optimal cost
 Unbounded optimal cost ⟶ indicate missing constraints
 Infeasible / empty feasible set ⟶ indicate logical inconsistencies

1.2 Forms

General / Compact Form

In a compact form, each constraint should be written as 

Transformations:

  🡒 

min
x∈Rn

 (or max)  cT x

A1x = b1

A2x ≤ b2

c = (c1, c2, … , cn)T ∈ R
n cT x

c

xj xj

x = (x1, x2, … , xn)T

x

cT x

−∞ +∞ +∞ −∞

aT
i x ≥ bi

aT
i x ≤ bi (−ai)T x ≥ (−bi)



  🡒 
  🡒  and 

Standard Form

Standard form LPs should have : minimization objective, equality constraints, non-
negative variables

Transformations:

 Eliminate ineq constraints:  🡒  with .
 Eliminate non-positive vars:  � Replace  with , where .
 Eliminate free vars: Replace  with , where 

1.3 Convexity

A set  is convex if for every  and every , we have 
.

 is a convex combination of  iff  where  and 

.

The convex hull of  is the set of points in the convex combination of
.

Claim The feasible region of an LP is a convex set.

A convex function satisfies

for all .

Theorem Let  be convex functions. Then the function

is also convex.

Affine function  is convex (and also concave) and the piecewise affine
function  is also convex. Furthermore, we can transform  as

the smallest  s.t.  for all 

1.4 Reformulating to LP

xj ≥ 0 (0, 0, … , 1, 0, … , 0)Tx ≥ 0

aTi x = bi aTi x ≥ bi (−ai)
Tx ≥ (−bi)

aTi x ≤ bi aTi x + si = bi si ≥ 0

xi ≤ 0 xi −x−
i x−

i ≥ 0

xi (x+
i − x−

i )

x+
i = max{xi, 0}, x−

i = max{−xi, 0}

S ⊂ R
n x, y ∈ S λ ∈ [0, 1]

λx + (1 − λ)y ∈ S

x ∈ R
n x1, …xk ∈ R

n x =
k

∑
i=1

λixi λi ≥ 0

k

∑
i=1

λi = 1

{x1, … ,xk}

{x1, … ,xk}

f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y)

x, y ∈ R
n,λ ∈ [0, 1]

f1, … fm : Rn → R

f(x) := max
i=1,…m

fi(x)

f(x) = d + cTx

max
i=1,…,m

fi(x) max(f1, … fk)

t t ≥ fi i



2 Geometry of LP
A polyhedron or polyhedral set is a set of the form , where 
and .

2.1 Extreme Point, Vertex, and Basic Feasible Solution (BFS

All of the following assumes .

A polyhedron is a finite intersection of half spaces (finite vertices)

Geometric Definition

A point  is a extreme point of  if whenever points  and scalar 
satisfies , then .

A point  is a vertex of  if exists  s.t.  for all .

Algebraic Definition

If , then we say the constraint  is active/tight at .

 is said to be of rank  if the span of  has dimension  → basically
satisfies  linearly independent constraints.

 is a basic solution if it has rank .

 is a basic feasible solution BFS of a polyhedron  if:

{x ∈ R
n ∣ Ax ≤ b} A ∈ R

m×n

b ∈ R
m

x ∈ R
n

x P y, z ∈ P 0 < λ < 1

x = λy + (1 − λ)z y = z = x

x P c ∈ R
n cT x > cT y y ∈ P∖{x}

aT
i x′ = bi aT

i x op bi x′

x k {ai ∣ aT
i x = bi} k

k

x n

x P



  → feasible
  linearly independent constraints are active at . → basic.

A basic solution  is degenerate if more than  constraints are active at .

Observation

Given a finite number of linear constraints, there are only a finite number of basic
solutions.

Thm 2.4 Let  be a nonempty polyhedron and . Then  is a vertex   is an
extreme point   is a BFS.

2.2 BFS for Standard Polyhedra

All of the following assumes .

A standard form polyhedron , where  and .
The  rows of the matrix  are linearly independent i.e. .

Remark: The previous definition is consistent with the standard form LP definition
from chapter 1.

Basic Solution Construction

A vector  is a basic solution of the standard polyhedron iff:

 
 exists indices  s.t.

 The basic columns  are linearly independent. The basic
columns forms a basis matrix.

 Non-basic variables  for all other .

 can be partitioned into , where .
The basic solution  is of the form  where , .

Remark: A basic solution  constructed using above procedure is a BFS ⟷ .

On Adjacency

2 distinct basic solution are adjacent iff the corresponding bases share all but one
basic column. Geometrically, adjacent BFS are extreme points connected by an edge
on the boundary.

2.3 General Polyhedra

Thm 2.8 Suppose . The following are equivalent:

  does not contain a line, i.e.  and  s.t.  for all 

x ∈ P

n x

x n x

P x ∈ P x ⟺ x

⟺ x

x ∈ R
n

P = {x ∈ R
n ∣ Ax = b,x ≥ 0} A ∈ R

m×n
b ∈ R

m

m A m ≤ n

x

Ax = b

S = {B(1),B(2), …B(m)}

AB(1),AB(2), …AB(m)

xi = 0 i ∉ S

A (B,N) B = (AB(1),AB(2), …AB(m))

x (xB,xN) xB = B
−1
b xN = 0

x x ≥ 0

P = {x ∈ R
n ∣ Ax ≥ b} ≠ ∅

P ∃x̸′ ∈ P d ≠ 0 ∈ R
n

x
′ + θd ∈ P θ ∈ R



  has a BFS �  has  linearly independent constraints.

Corollary: Every nonempty bounded polyhedron and nonempty standard form
polyhedron has at least 1 BFS.

2.4 Optimality of BFS

Thm 2.10 Consider the LP  s.t. , a polyhedron. Suppose  has at least 1
BFS and has an optimal solution, then there is an optimal solution which is a BFS.

This implies that if suffices to check BFS to find optimal solutions.

3 The Simplex Method
3.1 Developing the Simplex Method

Step 1 Finding feasible direction

Definition 3.1. For a polyhedron , and a point , a vector  is a feasible direction
if  for some .

A feasible direction  where  is defined as ,  and 
 for all . Notation note:  is the k-th column of A, and  is the set of

indices where  is a non-basic column for .)

From the above construction, we have . See first comment for motivation.

Step 2 Choosing largest multiplier 

We now need to figure out the largest possible  s.t. , i.e.  is a
BFS.

 if  → feasible set unbounded
or

Step 3 Calculate new cost

If  is a BFS with a feasible direction , , and , then  is also a BFS
which improves the objective by  where the reduced cost  (or rate of cost
change along feasible direction ) is defined as 

Remark:  for .

Step 4 Stopping condition

Remark 3.7. An optimal solution for minimization LP is reached if .

P P n

min cTx x ∈ P P

P x ∈ P d

x + θd ∈ P θ > 0

dj = (djB, djN) j ∈ N d
j
B = −B−1Aj d

j
j = 1

d
j
i = 0 i ∈ N ∖ {j} Ak N

Ai i ∈ N

Adj = 0

θ

θ̄ j > 0 x + θ̄ jd
j ≥ 0 x + θ̄ jd

j

θ̄ j = ∞ B−1Aj ≤ 0

θ̄ j = min{ (B−1b)i
(B−1Aj)i

| i ∈ B, (B−1Aj)i > 0} = (B−1b)l
(B−1Aj)l

x dj θ̄ j > 0 c̄ j < 0 x + θ̄ jd
j

θ̄ j c̄ j c̄ j

dj

c̄ j = cTdj = cj + cB ⋅ djB = cj − cB ⋅ B−1Aj

c̄ j = 0 j ∈ B

cT − cTBB
−1A ≥ 0



Personal comments:

  →  � If  is a BFS, then  will bring you to an
adjacent BFS (where  will become 0 a.k.a. leave basis and  will now become
non-zero a.k.a enters basis). The adjacent BFS is on the direction of  for some 

.
 Second step can be informally put as: As  gradually increase, stop on the first

intersection with another constraint. For  and  that we choose in step 2, we
have . As  enters basis,  leaves basis.

Definition 3.4. A BFS is nondegenerate if  i.e. all basic variables are
positive.

Thm 3.5 Optimality conditions) Consider a BFS  associated with basis matrix 
and let  be corresponding vector of reduced costs.

 If , then  is optimal.
 If  is optimal and nondegenerate, then .

Remark 3.7. In degenerate case, optimal BFS need not have .

3.2 Simplex

3.2.1 Simplex Tableau representation

Basis x Solution

 (ordered, top to bottom)

3.2.2 Primal) Simplex Method

Start with BFS (primal feasibility) ⟶ iterates to get primal optimality, i.e. .

Below is the steps, along with some justification on why the method works.

 The RHS   ) should always be non-negative before each iteration. If
needed, row multiply by -1 where necessary before the first iteration to satisfy
this condition.

Corresponds to the constraint , i.e.  ⟷  a feasible
solution.

 The basis columns should have .

Adj = 0 A(x + θdj) = Ax = b x x + θdj

l j

dj

θ > 0

θ

θ̄ j l

(B−1b)l + θ̄ j(B
−1Aj)l = xl + (θ̄dj)l = 0 j l

xB = B−1b > 0

x B

c̄

c̄ ≥ 0 x

x c̄ ≥ 0

c̄ ≥ 0

c̄ cT − cTBB
−1A −cTBB

−1b

xB B−1A B−1b

c̄ ≥ 0

B−1b

B−1b = xB ≥ 0 x ≥ 0 x

c̄B = 0



Consistent with 

 Find any negative reduced cost to get entering variable . ( Step 1 )

This is to find a  s.t. .

 Selecting leaving variable . ( Step 2 )

Consider variables with positive elements in the "entering variable" column 
. This ensures .

Choose any variable that gives minimum ratio of , i.e. 
Note that  is precisely column , i.e. 

 Multiply row  to make pivot 1, i.e. dividing the row by 

 Zero out all other entries, including  entry in column .

Through step 5 and 6, column  is now of the form , ready
to be part of the new basis.
Suppose  is new basis matrix. We update the  section by
multiplying it with  (this multiplication is done implicitly by the row
operations). As a result, we end up with 
Thus, RHS  previously  ) now become 
The reduced cost row is updated accordingly, along with the solution.

 Update leaving variable with entering variable. Step 5,6,7 completes Step 3

 Repeat steps 3  7 until there is no more negative reduced cost. Step 4

At the end of the iteration, the rightmost column will contain negative of the optimal
cost , and the optimal solution . Remember that )

How to fill in the  row?

 Find a suitable identity matrix in  and set it as the basic variables.
 If , then .
 Otherwise, use row operations from  on  to zero out . Use the result as .

3.2.3 Two Phase Method

This method solves LP in standard form without a readily available BFS.

First Phase (Solving the Auxiliary LP

Start by transforming standard LP  to Auxiliary LP 
.

 Ensure . Invert row sign if necessary.

c̄B = cTB − cTBB
−1AB = 0

j

y cTy < cTx

l

j (B−1Aj)i > 0
bi
vi

=
(B−1b)i

(B−1Aj)i
θj

−d
j
B j B−1Aj

l (B−1Aj)l

c̄ j

j (0, 0, … , 1, 0, … 0)

B̄ B−1Ax = B−1b

B̄
−1
B

B̄
−1
Ax = B̄

−1
b

xB B̄
−1
b = xB + θjd

j
B

−cTBxB = −cTx xB xN = 0

c̄

A

cTB = 0 c̄ = c

A cT cTB c̄

{min cTx ∣ Ax = b,x ≥ 0}

{min∑ y ∣ Ax + y = b, x ≥ 0, y ≥ 0, b ≥ 0}

b ≥ 0



 Add a set of artificial variables  to rows without positive slack (to create a
starting basis).

 Get a starting BFS by plugging  and . Starting basis is the artificial
variables and positive slack variables (an identity matrix).

 Apply simplex method on auxiliary LP.
 If the optimal cost in auxiliary LP is zero, a BFS to the original LP is found.

Otherwise, the original LP is infeasible.

Second Phase

Now we can solve the original LP with the BFS found in the first phase. Reuse first
phase tableau by deleting only the auxiliary variables column. Replace the cost
function with the original LP's cost function and do necessary row operations s.t. 

.

3.2.4 Big M method

Similar to 2 Phase Method, start by transforming standard LP 
to Auxiliary LP  where  is taken to be a
very large positive number, then apply simplex method to the Auxiliary LP.

If original LP is feasible and has optimal value, all artificial variables will be driven to
0.

3.3 Special Cases

3.3.1 Degeneracy

A BFS with one or more zero basic variables is degenerate.
Degeneracy reveals that the model has at least 1 redundant constraint at that
specific BFS.
Degeneracy might lead to indefinite cycling in the simplex iteration.
In general, degeneracy is not a big issue. We should proceed even if we find a
degenerate solution during one of the iteration.

3.3.2 Alternative Optima

LP has more than one optimal solution. Occurs when the objective function is
parallel to a binding constraint.
Detecting alternative optima A tableau has more than one solution if the
reduced cost corresponding to any non-basic variable equals to zero (barring
degeneracy)
If an LP has  optimal BFS , then the LP has infinitely many
optimal solutions.
Remark 3.21 The set of optimal solutions, if it is bounded, is 

yi

x = 0 y = b

cT
B = 0

{min cT x ∣ Ax = b, x ≥ 0}

{min cT x + M ∑ y ∣ Ax + y = b, x ≥ 0, y ≥ 0} M

k ≥ 2 x1, x2, … xk

conv(x1, x2, … xk) = {∑λix
i ∣ ∑λi = 1, λi ≥ 0 ∀i = 1, … , k}



3.3.3 Unbounded Solution

Here we deal with the case:

 Finite objective, but unbounded optimal set
 Unbounded objective

Detecting unboundedness

If all constraint coefficients of a non-basic variable  are all nonpositive, the
solution space is unbounded in the direction .
If in addition to the previous point, the corresponding reduced cost is also
negative, i.e. , then the objective value is .

3.3.4 Infeasibility

If we use 2 phase method, we will get a positive optimal cost in first phase.
If we use big-M method, when we reach the stopping condition (all reduced
costs are nonnegative), but we have at least one positive auxiliary variable in the
optimal solution.

4 Duality
Duality allows us to change constraints to variables, and variables to constraints.

For the following chapter, let's define primal problem (P as

and its dual problem (D as

The table below shows the transformation needed from (P to its dual (D. Depending
on whether (P is a maximization (right → left) or minimization (left → right)

minimize maximize

constraints variables

= free

variables constraints

free =

xj

dj

c̄j < 0 −∞

min cTx

Ax = b

max pT b

pTA = c

≥ ≥ 0

≤ ≤ 0

≥ 0 ≤

≤ 0 ≥



Thm 4.5. The dual of the dual is the primal

Remark 4.6. Equivalent primal LPs lead to different but equivalent duals

Thm 4.8 Weak Duality). The supremum of maximization problem objective is at least
that of the infimum of the minimization problem objective

Suppose the primal LP P is a minimization problem. If  is feasible in (P and  is
feasible in (D, then .

Corollary 4.9 Let  and  be primal and dual feasible, respectively, and .
Then  and  are primal and dual optimal, respectively.

Corollary 4.10. Unboundedness in one problem implies infeasibility in the other.
However, infeasibility in one problem might imply either unboundedness or
infeasibility in the dual problem.

Thm 4.11 Strong duality). If an LP has an (finite) optimum, so does its dual.
Moreover, both optimal costs are equal.

Remark 4.12.

 For a standard form primal LP, an optimal dual is  where  is an
optimal basis for the primal LP.

 If there is a basis  from original LP s.t. , then .

Definition. We say that  satisfies complementary slackness if  and 
.

Thm 4.16 Complementary Slackness). Let  and  be primal and dual feasible
respectively. Then  and  are optimal iff  satisfies complementary slackness.

Proposition. Suppose  is feasible. Then  is primal optimal iff there is a dual feasible 
 s.t.  satisfies complementary slackness.

Sensitivity analysis of optimal cost w.r.t b (b → b + )

Let  be a nondegenerate primal optimum of the problem (P, with basis  and
corresponding dual optimum . If  changes by  s.t. 
(i.e.  still feasible), then the optimal cost changes by .

In particular, if we let , then the change in optimal cost is 
. So  is interpreted as the marginal cost (or shadow cost) of .

Remark 4.19. Dual variables 's can be used to rank the 'requirements'  according to
their contribution to the objective value.

Dual Simplex Method

x p

pT b ≤ cT x

x p pT b = cT x

x p

pT = cT
BB−1 B

B0 AB0
= I pT = cT

B0
− c̄T

B0

(x, p) p(aT x − b) = 0

(c − pT A)x = 0

x p

x p (x, p)

x x

p (x, p)

Δ

x B

pT = cT
BB−1 b Δ x′

B = B−1(b + Δ) ≥ 0

x′
B pT Δ

Δ = ei = (0, … , 0, 1, 0, … , 0) pi

pi bi

pi bi



Starts with dual feasibility (a.k.a primal optimality), i.e.  ⟶ iterates
to get primal feasibility, i.e. .

For the dual simplex method, the LP is first transformed to an LP with only 
constraints so that the slack variables form an identity matrix. Then,

 The vector  needs to be nonnegative
 Identify any one entry on the RHS that is negative
 Identify negative elements in the selected row.

If no elements is negative, we have infeasibility in primal LP.
 Calculate the ratios  and select the column with the lowest ratio.
 Multiply by a factor that makes pivot entry 1.
 Add appropriate multiple of row to zero out the choosen column
 Update entering/ leaving variable
 Repeat steps 2  7 until all entry on the RHS is non-negative.

5 Sensitivity Analysis
Motivation: to understand if an optimal solution is still optimal under certain changes.

Key Idea: For each case, check that both feasibility, i.e.  and optimality
conditions, i.e.  are still satisfied after change.

Notation: For this section, define  and  as the i-th unit vector.

Note: All discussion below is based on minimization LP.

5.1 Change in RHS vector b

Suppose that some component  of  is changed to .

Optimality are unaffected. NEED TO CHECK for feasibility: .
If  remains feasible, the optimal cost is affected by .
If  is outside of the range that maintain feasibility of the current basis, we can
apply dual simplex to find a new optimal solution.

Technique: Change  by , and apply dual simplex as needed.

5.2 Change in cost vector c

Suppose that some component  of  is changed to .

Feasibility unaffected. It remains to check for optimality condition
If  is nonbasic, we NEED TO CHECK .

When , apply primal simplex from current BFS.
If  is basic, then the change (  to ) will affect all reduced costs. The
range for  where the optimal solution remains unchanged:

c̄ = cT − pT A ≥ 0

xB = B−1b ≥ 0

≤

c

c̄ i/|vi|

B−1b ≥ 0

cT ≥ 0

p = cT
BB−1 ei

bi b bi + δi

xB + δi(B−1ei) ≥ 0

bi + δi piδi

δi

xB B−1δ

cj c cj + δj

xj c̄ j + δj ≥ 0

δj < −c̄ j

xj cB cB + δej

δj



Lower bound: maximum of  where  and  is nonbasic
Upper bound: minimum of  where  and  is nonbasic

Technique: Change  by , do row operations to make , and apply primal
simplex as needed.

5.3 Change in a nonbasic column of A

Suppose that some entry  of the nonbasic column  is changed to 

Feasibility unaffected. Among reduced costs, only  is affected.
NEED TO CHECK 
When  is not in range, apply primal simplex.

Technique: Change  by  AND  by  and apply primal simplex as needed.

5.4 Adding new variable

Suppose a new variable , together with a corresponding column  and cost 
 is added. This yields the new LP

Note that  is still a BFS to the new problem.
NEED TO CHECK optimality, i.e. . If not satisfied, apply primal simplex.

5.5 Adding new constraint

Suppose a new constraint  is added to original LP. This yields the new LP

Optimality unaffected. If original solution satisfies new constraint, it remains
optimal to the new problem.
Otherwise,

Add the new constraint to the optimal tableau
Use row operations to make  an identity matrix.
NEED TO CHECK . If we do not have feasibility, apply dual simplex to
solve new problem.

6 Formulating Network Flow Problems
Formally, a network is a directed graph .

c̄i/(ejB
−1Ai) ejB

−1Ai < 0 i

c̄i/(ejB
−1Ai) ejB

−1Ai > 0 i

c̄ j δj c̄B = 0

aij Aj aij + δij

c̄ j

c̄ j − δijpi ≥ 0

δij

Ai B−1δ c̄ i cBB−1δ

xn+1 An+1

cn+1

min c
T

x + cn+1xn+1

Ax + An+1xn+1 = b

x ≥ 0 xn+1 ≥ 0

(x, 0)

c̄n+1 ≥ 0

aT
m+1x ≤ bm+1

min c
T

x

Ax = b

aT
m+1x + xn+1 = bm+1

x ≥ 0 xn+1 ≥ 0

(xB, xn+1)

c̄ ≥ 0

G = (V , E)



Let  denote the amount of flow through edge .
For each node ,  denotes the external supply / demand. A node is a
supply node (if ), a demand node (if ) or a transshipment node (if 

).
For each edge , we have  for some upper bound (or
capacity) . If , then the problem is uncapacitated. Otherwise it is
capacitated.
Let  denotes the cost per unit flow on the edge 

Put in a LP manner, a network flow problem is :

Flow balance constraint: Flow out - Flow in = Supply
 is a node-arc incidence matrix, where column corresponding to arc 

has +1 in the row for outbound node  and -1 in the row for inbound node  and 0
otherwise.

Shortest Path Problem

Problem: Suppose we have a directed graph  and let the cost (or length)
for each arc  be . Find a shortest path from a node  to a node .

In LP formulation:

where ,  and  otherwise.

Furthermore if there are no negative cycles we can relax the condition on  to be 
.

In the optimal solution, we will have  if arc  is in the shortest path and 0
otherwise.

Application: Three Jug Puzzle, Dynamic Lot Sizing

Dynamic Lot Sizing

Problem: There are  time periods, and for each of these time periods, there are
demands  to meet. At any time , we can either produce  and/or carry  from
time  to fulfill . Suppose producing  items at time  costs  if  and
0 otherwise, where  is a per-unit production cost and  is a fixed setup cost.

xij (i, j) ∈ E

v ∈ V bv

bv > 0 bv < 0

bv = 0

(i, j) ∈ E 0 ≤ xij ≤ uij

uij uij = ∞

cij (i, j)

min cTx

s.t. Ax = b ... flow balance constraint

0 ≤ x ≤ u ... edge capacity constraint 

A ∈ R
|V |×|E| (i, j)

i j

G = (V ,E)

(i, j) ∈ E cij s ∈ V t ∈ V

min cTx

s.t. Ax = b

x ∈ {0, 1}|E|

bs = 1 bt = −1 bi = 0

x

x ≥ 0

xij = 1 (i, j)

T

di i xi Ii−1

i − 1 di xi i cixi + Ki xi > 0

ci Ki



Key property:

 In all periods, we do not both carry inventory from the previous period and
produce

 Each  for some . Note: if , then ). This means the 

 items produced at time  exactly meet demands for periods  upto .

We can formulate this as a straightline graph  where  and 
. Each arc costs  which represents the cost to produce at

time  (together with setup and holding costs) to meet the demands at time 
. Solving for the shortest path on  will give us the optimal production

schedule.

The Dual Problem

As multiple dual solutions are possible due to translation, we can just set  and
now we can interpret  as the distance from node  to  along the shortest path.

Max Flow Problem

Objective: Finds the max amount of commodity that can be transported from a
source node to a terminal node without exceeding the given capacity of any arc in a
capacitated network.

Problem: Suppose we have a directed graph  and let  be the
capacity for each arc . Find max flow from node  to node .

In LP formulation:

where ,  and  otherwise.

The Dual Problem (Min Cut Problem)

A cut is a partition of  into two subsets  and 
An s-t cut is a cut s.t.  and 
The capacity of a cut is the sum of the capacities of forward arcs .
A minimum s-t cut is an s-t cut with minimum capacity.

By the weak duality theorem, the capacity of any cut is an upper bound on the max
flow from  to .

xi =
j

∑
k=i

dk j ≥ i − 1 j = i − 1 xi = 0

xi i i j

G = (V ,E) V = {0, 1, … ,T}

E = {(i, j) ∣ 0 ≤ i < j ≤ T} cij

i + 1

i + 1, i + 2, … , j G

max ps − pt

s.t. pi − pj ≤ cij  for all (i, j) ∈ E

p free

pt = 0

pi i t

G = (V ,E) uij ∈ [0, ∞)

(i, j) ∈ E s ∈ V t ∈ V

max v

s.t. Ax = b

0 ≤ x ≤ u

bs = v bt = −v bi = 0

V S S̄ = V ∖S

s ∈ S t ∈ S̄

(S, S̄)

S S̄



Theorem (Max flow - Min cut Theorem). The maximum flow is equal to the capacity
of a minimum cut.

The dual problem is:

In the problem, the dual variables will satisfy:

  if node  is in set  of the cut and  otherwise.
  if arc  contributes to cut capacity, i.e.  and  and 

otherwise.

Min Cost Flow Problem

Problem: Suppose we have a directed graph . We have a cost  and
capacity  for each arc  and a supply / demand value  for each
node . Find the minimum cost flow s.t. supply meets demands and capacity
restrictions are satisfied.

In LP formulation:

Remark:

The Max Flow problem can be transformed into the min cost flow problem by
setting  and adding a new arc  with . Cost is defined as 
and  otherwise.
The shortest path problem can be transformed into the min cost flow problem
by setting , demands as ,  and  otherwise.

7 Network Simplex Method
Assumption:

 

 Graph is connected

Construct a truncated node-arc incidence matrix  by taking 
rows of . Replace the flow balance constraint  by 
A flow vector  is a tree solution of  if

min uT z

s.t. −yi + yj ≤ zij  for all (i, j) ∈ E

−ys + yt = 1

p free, zij ≥ 0  for all (i, j) ∈ E

yi = 1 i S yi = 0

zij = 1 (i, j) i ∈ S j ∈ S̄ zij = 0

G = (V , E) cij

uij ∈ [0, ∞) (i, j) ∈ E bi

i ∈ V

min cT x

s.t. Ax = b

0 ≤ x ≤ u

b = 0 (t, s) uts = ∞ cts = −1

cij = 0

uij = 1 bs = 1 bt = −1 bi = 0

∑
i∈V

bi = 0

~
A ∈ R

(n−1)×m n − 1

A Ax = b
~

Ax =
~
b

x ∈ R
m G = (V , E)



 , and
 There is a spanning tree with edges  s.t.  for all .

A feasible tree solution is a tree solution with .

Theorem 7.2. The columns corresponding to  arcs form a basis of  iff these
arcs form a spanning tree.

Steps:

 Start with any feasible spanning tree .
 Pick an arc  s.t. .

Entering arc will form a cycle with arcs in .
Using  as a forward arc in the cycle, calculate  as the cost around
the cycle (put negative signs for arc that is opposite direction).
If  for all arcs  then we have obtained an optimal solution.

 Pick a backward arc  in the cycle with minimum value of .
If there is no such backward arc, then the problem is unbounded.

 Update all  in the cycle with  if  is either  or a forward arc, and 
 if  is a backward arc. Essentially, this will swap  with .

As in LP, a degenerate tree solution corresponds when some arc in tree solution is
zero.

Alternative way to calculating 

We can use

 
  for all .
  for all 

Integrality

Theorem 7.4. Consider an uncapacitated network flow problem where underlying
graph is connected. Then

 For every basis matrix ,  has integer entries
 If  integral, then every primal basic solution  is integral.
 If  integral, then every dual basic solution  is integral.

~
Ax =

~
b

T ⊆ E xij = 0 (i, j) ∉ T

x ≥ 0

n − 1
~

A

T

(i, j) ∉ T c̄ ij < 0

T

(i, j) c̄ ij

c̄ ij ≥ 0 (i, j) ∉ T

(p, q) xpq

xkl +xpq (k, l) (i, j)

−xpq (k, l) xpq xij

c̄

pn = 0

cij = pi − pj (i, j) ∈ T

c̄ ij = cij − (pi − pj) (i, j) ∈ E

B B−1

b x

c p


