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1 Theory of Interest

1.1 Interest

Accumulation function  is the accumulated value of 1 dollar at time . We have 
.

Let  be the annual rate of interest

 Simple Interest: 
 Compound Interest: 

Nominal rate convertible  times a year is denoted by . The interest to be paid over 1
period is .  is called the frequency of compounding

Two nominal interest rates  and  are equivalent if 

The effective annual interest rate 

Interest is compounded continuously when . Then . 

is known as continuously compounded rate of interest

Force of interest from accumulation function is defined as 

Thus, we have 

1.2 Present Value and Time Value

For a cashflow  consisting of a series of payments  received

at time , the present value PV of this cashflow is 

For the special case when , we can rewrite the cashflow above as 

Time value at time  ( ) of a cashflow  is 

Principle of Equivalence). 2 cashflow streams are equivalent iff they have the same time
value at any point in time.

Equation of Value) .
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Any non-negative root  of the equation of value is called the yield or IRR of the cashflow
stream .

Newton Raphson Method)

1.3 Annuities

An annuity is a series of payments made at regular intervals.

 An annuity-due is one for which payments are made at the beginning of each period
 An annuity immediate is one for which payments are made at the end of each period.
 Perpetual annuity (perpetuity) is an annuity with an infinite number of payments.

Note: beginning of -th year = end of -th year → 

1.4 Loans

If a loan  made at  is to be repaid with the cashflow stream 
, then 

The loan balance immediately after the -th installment has been paid is the TV at  of
the remaining  installment payments.

2 Bonds and Term Structure
Terminology

 Face value (par value): the amount based on which periodic interest payments are
computed

 Redemption value (maturity value): the amount to be repaid at the end of loan
 Maturity date (redemption date): the date on which the loan will be fully repaid
 Coupon rate - the bond's interest payments as a percentage of the face value to be made

at regular intervals during the term of the loan.

2.2 Bond Valuations

Let  be the current price,  the face value,  be the redemption value,  the nominal
coupon rate,  the number of coupon payments per year,  total number of coupon
payments and  the nominal yield.

 where  is made up of coupon payments of  at time 
and a redemption of  at 

A bond is priced at a premium if , at par if  and at a discount if 

.
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If , the above can be written as . Hence a bond is priced

at a premium if , at par if  and at a discount if 

If , we can write 

A perpetual bond (or consol) is a bond that never matures, i.e. . We have 

Bond Price between Coupon Payments at the same Bond Yield: 

2.3 Duration

The Macaulay Duration  is the weighted average time to maturity  of the cashflow
stream  with weights given by 

For a zero coupon bond, 

Consider a bond that pays a total of  coupons at a frequency of  payments a year with
. Let the nominal bond yield and nominal coupon rate to be  and  respectively, then

Duration and Sensitivity of 

We have  for any cashflow  with an effective annual rate of 

We call the term  as the modified duration 

The duration for a perpetuity is given as 

For a bond that pays  coupons a year with a nominal bond yield , we have 

We shall note that  is the slope of the tangent line to the price-yield curve at the point
where the yield is , so we have 

Duration of Bond Portfolio

The duration of a bond portfolio consisting of  units of bond , assuming that the bonds
have a common effective annual yield (or take an average yield), the duration of the portfolio 

 is a weighted average of the duration of each individual bonds.

Convexity

The convexity of the bond is the quantity 

Thus we have shown that 

2.4 Yield Curves and Term Structure of Interest Rates

The relationship between yield and maturity is called the term structure of interest rates.
The graphical representation is known as a yield curve
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The yield curve is

 upward sloping or normal if people are optimistic about the future
 flat if people are indifferent about the future
 downward sloping or inverted if people are pessimistic about the future

Spot and Forward Rates

Spot rates  is the annual interest rate that begins today ( ) and lasts until some future
time . In effect,  is the yield-to-maturity (YTM of a zero-coupon bond that matures at time 

Forward rates  is the interest rate observed at some future time  and lasts until a
time .

We have 

Bootstrap Method

To determine  when  has been found: find a -year coupon bond with price 
 and cashflow  and solve for .

3 Expected Utility Theory

3.1  3.2 Basic Terminologies

Utility function  of a person is real-valued, continuous, and increasing.

Investment decisions (invest, indifferent, avoid) are made based on the expected utility of
his final wealth , where  is his initial wealth and  the random
payoff of a risky prospect, (>, = , <) w.r.t. 

Concave and Convex Utility Functions

A function  defined on an open interval  is concave if for any given  and for any 
, 

A function  defined on an open interval  is convex if for any given  and for any 
, 

A linear function is both convex and concave.

Jensen's Inequality. Let  be a random variable and let  be a strictly concave function.
Then, . Reverse inequality signs if  is strictly convex.

Risk Attitude. An individual with utility function  is (1 risk averse iff  is strictly concave,
2 risk neutral iff  is linear, 3 risk loving iff  is strictly convex.

Observe: a risk-averse individual will avoid fair game, i.e. 

The certainty equivalent of a risky prospect with payoff  w.r.t. a utility function  is the
real number  where 
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The risk premium of a risky prospect with payoff  w.r.t. a utility function  is the real
number 

Positive Affine Transformation. Let  be an utility function. For any ,  is a
positive affine transformation of .

Corollary:

 Two investors whose utility functions are affine transformations of one another have the
same risk attitude.

  AND 

3.3 Arrow-Pratt Measures of Risk Aversion

For a risk averse individual with utility function , his Arrow-Pratt absolute risk aversion
ARA coefficient at wealth level  is 

Result.  iff  and  are positive affine transformations of each other.

We say 2 utility functions are equivalent iff they have the same ARA.

We use ARA to compare the degree of risk aversion of 2 individuals. If  for all ,
we say that the individual with utility function  is globally more risk averse than the
individual with utility function .

We can restate the above result as follows:
Theorem. An individual with utility function  is globally more risk averse than an individual
with utility function  iff exists an increasing and strictly concave function  s.t. 

Definition. Arrow-Pratt Relative Risk Aversion (RRA 

3.4 Portfolio Selection

An individual with initial wealth  can invest a portion  where  of his money in a
risky investment  with a random rate of return . Then the expected utility of his final
wealth is .

The individual will seek  that maximises 

4  5 Portfolio Theory

n risky assets

Rate of Return of Asset. If  is invested in an asset at time  is worth a random amount
of  at time , then the rate of return of asset is a random variable 

Risk of Asset. A measure of the risk of asset  is .

Correlation of returns. A statistical measure of the returns of two assets  and  is the
covariance .
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The correlation coefficient .

Short Selling. An individual shorts an asset by borrowing a certain number of units of asset
at  to sell immediately at  to which he would buy the same number of units of the
asset at some pre-agreed date  at . The borrower profits  (limited profit,
unlimited loss)

Notation. We can denote shorting as a negative number of units of asset.

Assumption. the covariance matrix  is positive definite, i.e. for all nonzero vector , we
have . Fact:  is positive semi-definite)

Definition.

Let the vector  be an individual's portfolio that sum to 1.
The rate of return  of the portfolio is defined as the weighted sum of the rate of return

of the individual assets, i.e. 

The portfolio mean  or  where  is the mean vector

The portfolio variance  or  where  is the

covariance matrix
 are symmetric and positive definite, i.e. for any non-zero vector , we have 

For any two portfolios with return rates  and weight vectors  respectively, we
have 

Minimum-Variance Frontier & Global Minimum-Variance Portfolio GMVP

Problem 1. Fix . We seek a portfolio of minimum  s.t. . Such portfolio lies on
the minimum-variance frontier.

Let 

Since  is positive definite, we have . Moreover, using Cauchy-Schwartz Inequality
we have 

Given any , the minimum-variance portfolio is given as

The minimum-variance frontier curve (  against ) is defined as

Problem 2. Find a portfolio with the minimum portfolio risk . Such portfolio is called
the global minimum-variance portfolio (GMVP).
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GMVP satisfies the following:

 and  for any portfolio .
 for any portfolio in risky assets 

The upper half of the minimum-variance frontier, above GMVP, is called the efficient
frontier. I.o.w., a portfolio  lying on the frontier is efficient iff 

Feasible Sets. The feasible sets for 2 asset = minimum variance frontier. Given any 2 risky
assets 1 and 2, the feasible set is

 A straight line joining  and  if 
 A V-shaped graph comprising two straight lines, each joining the  of 1 asset to a

point with zero portfolio variance when 
 A curve passing through  and  if 

When there are  assets, the feasible set is the solid region enclosed by all the curves
formed by portfolios with 2 assets.

Two Fund Theorem. Let  and  be the weight vectors of any 2 distinct portfolios on the
minimum-variance frontier. Then, the minimum-variance set of portfolios is the set 

Corollary. Let  be the GMVP, and .

 and 
 is efficient if .

 is efficient for all 

Tutorial 6.
Given an initial wealth  and two uncorrelated investments  and  with rates of returns 

 and  respectively, where , a risk averse investor whose utility function is
any positive affine transformation of ,  allocates  in  and  in

 where  s.t.  is maximized.

n risky assets + 1 risk-free asset

Consider a portfolio comprising of the risk free asset with a deterministic rate of return 
(also called the risk-free rate) and the  risky assets.

Define.

Let the vector  be the weight vector for the portfolio in the  risky

assets. However, the assumption  might no longer hold.

The rate of return of the portfolio  where  is the vector of rates of
return of risky assets.
Let  be the mean vector. Then, the portfolio mean 
The portfolio variance is 
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Problem 3. Problem 1 in the  risky assets + 1 risk-free asset context.

Given any , the minimum-variance portfolio is given as

The minimum-variance frontier curve (  against ) is defined as

All minimum-variance portfolios lies on 2 rays emanating from the point . The efficient
frontier is known as the Capital Market Line CML. The feasible set lie within the open
triangular region enclosed by the two region.

We shall now care more for the case when , i.e. investing in risky assets have
a slightly larger rate of return compared to risk-free assets. This is natural in the real world,
otherwise you wouldn't want to invest in a risky asset.

The tangency portfolio is the unique portfolio that lies on both the CML and the minimum-
variance frontier for risky assets, i.e. it invests only in the  risky assets. Then, we have

,  and 

As such, the CML can be expressed as 

Sharpe Ratio.  is the risk-adjusted return. Portfolios that lie on the CML
attain the highest Sharpe ratio.

One-Fund Theorem. In a financial market with risky assets and a risk-free asset, an investor
will choose to hold only the risk-free asset and the tangency portfolio. Investors differ only
in the proportion of total wealth allocated to the tangency portfolio.

Intuitively, One-Fund Theorem says that rational investors only invests along the CML; the
proportion allocated to the tangency portfolio is determined by an investor's risk-
averseness)

Consequence. all investors hold risky assets in the same relative proportion, that is as given
by the tangency portfolio.

5.4 Capital Asset Pricing Model) CAPM

Market portfolio. Suppose there are  units of asset , priced at  per unit, the total market
cap of asset  is . The market portfolio  is given by 

In CAPM, assuming demand = supply, tangency portfolio = market portfolio.

Beta of Assets We call  as the beta of asset , denoted by .
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CAPM Theorem. For any portfolio  investing in  risky assets and 1 risk free asset, we have
 where .

 is the excess return (expected return in excess of the risk-free rate) of market
portfolio

Portfolio beta. , where  is the beta vector with , measures the
sensitivity of excess return of  w.r.t. excess return of the market portfolio. Clearly 

 and 

For any efficient portfolio  lying on the CML

 the CAPM coincides with the equation of the CML, i.e. correlation = 1 and 

 From one fund theorem, let . Then,  and 

For 2 portfolios  and , CAPM gives  
Corollary.  iff .

Tutorial 10. Let  be any portfolio and let  be a portfolio on the CML. Then 
 and 

Security Market Line

The relationship between mean return and beta for any asset is a straight line (called the
SML of slope .

Within the framework of CAPM, the return of any asset should fall on the SML. Thus, we can
call a portfolio undervalued (fairly valued, overvalued) if its estimated return is > ( = , <) the
benchmark return given by CAPM.

The difference between the estimated return and the benchmark return is called alpha of
the return. Undervalued assets have positive alphas.

Systematic and Non-systematic Risk

The CAPM suggests that  for some random variable . It is easy to
see that  and .

It follows that . The total risk is a sum of

 systematic risk  : market risk that cannot be diversified
 non-systematic risk (specific risk / idiosyncratic risk)  which is not correlated to

the market and hence can be reduced via diversification.

Theorem. Under the assumptions of the CAPM, an asset or portfolio carries only systematic
risk if and only if it lies on the CML (i.e. efficient)

6 Basic Option Theory
Some definitions

p n

μp − rf = βp(μm − rf) βp = cov(rp, rm)/σ2
m

μm − rf

βp = wTβ β βi = σi,m/σ2
m

p

wTβ = βm = 1 βf = 0

p

cov(rp, rm) = σpσm

rp = αrm + (1 − α)rf βp = α σ2
p = β2

pσ
2
m

i j
μi−rf
μj−rf

=
βi

βj

μi = μj βi = βj

p q

βpq = cov(rp, rq)/σ2
q = βp/βq μp − rf = βpq(μq − rf)

μm − rf

rp = rf + βp(rm − rf) + ϵp ϵp

E[ϵp] = 0 cov(rm, ϵp) = 0

σ2
p = β2

pσ
2
m + Var(ϵp)

β2
pσ

2
m

Var(ϵp)



 Derivatives are financial instruments whose value depends on some underlying assets,
such as stocks and bonds. An option is a derivative

 A call (put) option is a contract that gives its holder the right to buy (sell) a specific
quantity of an underlying asset at a specified price (strike / exercise price), on or before
a specified date (expiration/maturity date)

 In an option contract, the party that holds the right is the buyer/holder of the contract and
is said to be in the long position. The party on the other side of the contract is called the
seller/writer of the contract and is said to be in the short position

 American options can be exercised anytime before the expiration date while European
options can only be exercised on the expiration date.

 The holder of an option pays the writer an up-front fee known as the option
premium/price

The following chapter only discusses the European option.

Notation.

: maturity date of option
 : strike price
: price of underlying asset at time 
: current call option price
: current put option price

Moneyness of options. An option is said to be out-of-the-money (at-the-money, in-the-
money) if it has a negative (0, positive) payoff.

Payoff and Profit

 The payoff from a long position in a call option is 
 The payoff from a long position in a put option is 
 The payoff from a short position in an option is the negative of the payoff from a long

position in the option.
 The profit of an option is the option's payoff - the time value at  of the option price.

Remarks: The writer of a call option face unlimited downsides.

6.3 Options Trading Strategy

All options here are for 1 asset.

 Covered Calls: long 1 asset + short 1 K-call
 Protective Puts: long 1 asset + long 1 K-put
 Bull Spreads: long 1  option + short 1  option where 
 Symmetric Buttefly Spreads: long 1  option + short 2  option + long 1  option

where  and 
 Long (Short) straddles: long (short) 1 K-call + long (short) 1 K-put

6.4 Arbitrage-Based Restrictions on Option Prices
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Arbitrage Opportunity. Let  be the value of a portfolio today (i.e. how much would you
pay to get the portfolio today) and  is the value at some future time , then an arbitrage
opportunity arises if either:

  and  with  for some .
  and .

No-arbitrage Principle. Arbitrage opportunities do not exist.

More like if arbitrage opportunity exists, it will be exploited and market will move back to a
no-arbitrage condition)

Bounds on option prices

Let  and  be the call and put option values with strike price  respectively.

 
 
 If , then 
 If , then 
 For any , , i.e.  is convex.

Result. When the underlying asset pays no dividends, it is never optimal to exercise an
American call option early.

Put-Call Parity. Only for European options. Suppose a put option with price  and a call
option with price  are written on the same non-dividend paying asset, have the same strike
price  and have the same maturity , then 

No-arbitrage argument for equality. Suppose we have two portfolios  and  s.t. 
, then .

6.5 Binomial Option Pricing

The Binomial Model  Cox-Ross-Rubinstein (CRR Model

We consider an option on an underlying asset which trades during a fixed time interval ,
divided into  equally-spaced sub-intervals  where . Let  be the asset
price at time . Let 

Under the binomial model,  depends on  and have 2 outcomes:

  with probability 
  with probability 

for some constants  satisfying .

We assume a continuously compounded risk-free rate  satisfying . The inequality
ensures there are no arbitrage opportunities.

Let  be the value of an option at time . For a one-step binomial model, i.e. , we can
construct a replicating portfolio ( ) consisting of  units of the underlying asset + 
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amount invested in a risk-free asset such that it has the same end-of-period value as the

option. We have  and 

Based on the no-arbitrage principle, the initial value of the portfolio is equalt to that of the
option, i.e. 

Call  the risk-neutral probability, then we have  where 

Remark:

 The above option pricing formula is independent of the probability  of asset moving up
or down

 
 We can extend the above to a two-step binomial model (apply the one-step binomial

method twice to get  and ) and get 
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