
MA4264 � Game Theory

Tools for multi-person decision making: cooperative & competitive

Vocabulary:

Complete Information� Everyone knows each other's payoff function (payoff functions
are common knowledge)
Perfect Information� At each move of the game, the player with the move knows the full
history of the play of the game so far.
Static Games: one-stage decision making

Keywords: Nash Equlibrium (ch. 1�, subgame-perfect Nash Equilibrium (ch. 2�
Bayesian Nash Equilibrium (ch. 3�, Perfect Bayesian Equilibrium (ch. 4�, Nash Bargaining
Solution & Shapley Value (ch. 5�

1 Static Games with Complete Information
Let  denote the set of strategies (strategy space) available to player  and  be an
arbitrary member of this set.
Let  be player 's payoff function, i.e.  is the payoff to player  if the players
choose strategies .

Def 1.1 The normal-form (or strategic-form) representation of an -player game is denoted
as . → (players, strategies, payoff)

Def 1.2 Let . Strategy  is strictly dominated by  if for all combination of other
players' strategies, .

Rational players do not play strictly dominated strategies.

We could apply iterations of eliminating strictly dominated strategies (IESDS) , but there
might be cases where �1� no such strategy are left and �2� we need to assume it is common
knowledge that all players are rational.

Def 1.3. The best response for player  to a combination of other players' strategies 
, denoted by , is the set of  that maximizes .

Def 1.4 �Nash Equilibrium / NE�. Strategies  are a Nash equilibrium if 
for .

Based on def 1.4, there are 2 ways to find NE�

 For any guess , compute  and . Then  is an NE if 
 and 

 Compute  for all  and  for all  and calculate the intersection.

Some results:

A game can have multiple NE
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If game theory's solution to a game is unique, then solution is NE.
�Nash, 1950� In any finite game, there exists at least 1 NE.

The relation between NE and IESDS�

If the strategies  are NE, then they survive iterated elimination of strictly
dominated strategies. �In other words, NE  IESDS�
If iterated elimination of strictly dominated strategies eliminates all but the strategies 

 then these strategies are the unique NE of the game

Applications

Cournot Model of Duopoly

Let  and  be the quantities of the same product produced by firms 1 and 2, respectively,
which costs  to produce.

�The two firms can set different prices, but the one with higher price will lose all market
since it's the same product, so we can assume that they sell at the same market-clearing
price.� Let  be the market-clearing price when the total quantity on the market
is , and  the reservation price, i.e. the highest price a customer is willing to pay
for the product.

Then the profit is .

Suppose  is a NE. Then  maximizes  for a given . Hence, 
 for . Solving, we get .

For a monopoly, the optimal quantity (based on game theory) is , which is less than 
. This means there is less supply, and hence higher prices in the monopoly

case.

Additional results.

�T1 Q6� In the general case of  oligopolists, the Cournot quantity is 
�T1 Q7� If the costs are  then the firms should produce

 if  (i.e. )
 if , i.e.  is much smaller than .

Bertrand Model of Duopoly

Suppose now the two firms produce different products (that is somewhat substitutable)

If firms 1 and 2 chooses price  and , respectively, the quantity that consumers demand
from firm  is  where  reflects the extent to which firm 's product
is a substitute for firm 's product.

The profit is now . Taking first-order derivatives, we obtain 
.
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Problem of the Commons

The problem of the commons basically states that if one considers only his own incentives,
and not the effect of his actions on other individuals, it will result in overutilization of public
resources and underutilization of public goods.

Final-Offer Arbitration

Setting: A union and a firm are embroiled in a wage dispute. Both sides make their offers 
and . Next, an arbitator chooses one of the two offers as the settlement by choosing the
settlement that is closer to his own ideal settlement (not known to either parties). Game
Theory concludes that if there is more uncertainty about the arbitrator's preferred
settlement, the parties can afford to be more aggressive.

Zero-Sum Game

A two-person game is a zero-sum game (also called a matrix game) if 
for all  and . Then  is an NE if , (i.e. NE is
the minimum payoff for player  in its row and maximum payoff in its column)

Mixed Strategies

Def 1.5 In the normal-form game , suppose . Then
each strategy  in  is called a pure strategy for player . A mixed strategy for player  is a
probability distribution  where  and 

So far, we have only talked about pure strategies, i.e. where . We can
extend the definition of NE to require each player's mixed strategy be a best response to
other players' mixed strategy.

Note that a pure strategy may be

 strictly dominated by a mixed strategy
 a best response to a mixed strategy despite it not being a best response to any pure

strategy.

Let  and . If player 2 believes that player 1 will play the
strategies  with probabilities , then player 2's expected payoff of
playing the strategies  with probabilities  is

Def 1.6 In the two-player normal-form game , the mixed strategies 
are a Nash Equilibrium if each players' mixed strategy is a best response to the other
player's mixed strategy, i.e.  satisfy  for every probability distribution 
over  and  satisfy  for every probability distribution  over .

It is worth emphasizing that such a mixed-strategy NE does not rely on any randomness
(flipping coins / rolling dice). Rather, we interpret player 's mixed strategy as a statement of
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player 's uncertainty about player 's choice of (pure) strategy.

Note that each player's best-response correspondence always includes (the appropriate
generalizations of) the limit from the left, the limit from the right and all the values in
between. This is because if player  has several pure strategies that are best responses to
the other players' mixed strategies, then any mixed strategy  that puts all its probability on
some or all of player 's pure-strategy best responses is also a best response for player .

If there are more than 2 strategies for a player, we can first eliminate strictly dominated
strategies.

Result.

�T2 Q5� If a pure strategy  is elimianated by IESDS, then the strategy will be
played with zero probability, i.e.  in any mixed strategy NE.

Theorem 1.1 �Nash, 1950� In the -player normal-form game . If  is
finite and  is finite for every , then there exists at least 1 NE, possibly involving mixed
strategies.

2 Dynamic Games of Complete Information

2.1 Complete and Perfect Information
Def. Action space  is the set of all actions that can be taken by a player.

2.1A Assume the setting of a game where �1� Player 1 chooses an action  from action
space . �2� Player 2 observes  and then chooses an action  from action space . �3�
Payoffs are  and .

Backwards Induction

At the second stage, player 2 observes  and chooses an action by solving .

Assume it has a unique solution, denoted by .

Knowing player 2's best response, player 1 should then solve  as its action

in the first stage. Assume it has a unique solution, .

We call  the backwards-induction outcome of the game.

Example 2.1
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Perfect Information� At each move of the game, the player with the move knows the
full history of the play of the game so far.
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A dynamic game of complete and perfect information can be easily represented by a game
tree (as shown above). In Example 2.1, the game begins with a decision node for player 1.
After 1's choice of L or R, 2's decision node is reached. A terminal node is reached after 2's
move, and payoff is received.

Here,  is the backwards-induction outcome. Here  strategy by player 2
means to play  if player 1 plays  and to play  if player 1 plays .

Stackelberg Model of Duopoly

Consider a dominant firm moving first and a follower moving second.

 Firm 1 chooses a quantity .
 Firm 2 observes  and then chooses a quantity .
 The payoff to firm  is  where  if  else 0.

The backwards-induction solution is . This ended up making firm 2 worse off.
Having firm 1 know that firm 2 knows  hurts firm 2.

This is an important difference between single-person decision and multi-person decision
problems. In single-person decision theory, having more info can never make the decision
maker worse off. In game theory, however, having more info (or more precisely, having it
known to other players that one has more info) can make a player worse off.

2.2 Two-Stage Games of Complete but Imperfect
Information
 Players 1 and 2 simultaneously choose action  and .
 Players 3 and 4 observe the outcome of the first stage  and then simultaneously

choose action  and 
 Payoffs are  for .

For each given , players 3 and 4 will try to find the NE in stage 2. Assume there's a
unique NE . Now, players 1 and 2 will try to find NE in stage 1 with payoff 
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. Suppose  is the unique NE. Then 
 is called the subgame-perfect outcome of the 2-stage game.

Applications

Bank Runs

The bank-run game shows that a bank run might happen as an equilibrium phenomenon. If
investor 1 believes that investor 2 will withdraw before the investment matures, then
investor 1's best response is to withdraw as well, although both investors would be better off
if they waited until the investment matures before withdrawing.

Tariff Game

 Two governments simultaneously choose tariff  and 
 Two firms simultaneously chooses the amount for home consumption  and export .
 If the total quantity on the market in country  is , then the market price 

. The firm has constant marginal cost  and need to pay  to government 
.

 The payoff to firm  is its profit 
 and the payoff to

government  is .

The subgame perfect outcome is ,  and . But this is
not socially optimal. If , then this is exactly Cournot's model and  which
means lower price for the customer.

2.3 Dynamic Games of Complete but Imperfect
Information

Extensive-Form Representation of Games

Def. The extensive-form representation of games specifies

 the players in the game
 when each player has the move, what actions can they take, what knowledge do they

have upon taking the move
 the payoff received by each player for each combination of moves that could be chosen

Def. A strategy for a player is a complete plan of actions. It specifies a feasible action for the
player in every contingency in which the player might be called on to act. In other words:
feasible action for each information set.

Remark

In MA4264 � 1 Static Games with Complete Information , player 's strategy space  is
simply the action space .
In repeated games, a player's strategy specifies the action the player will take in each
stage for each possible history of play through the previous stages.
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When information is not perfect, some previous moves are not observed by the player with
the current move. To present this kind of ignorance of previous move, we introduce the
notion of a player's information set.

Def. An information set for a player is a collection of decision nodes satisfying:

 The player needs to move at every node in the information set.
 When the play of the game reached a node in the information set, the player with the

move
does not know which node in the set has (or has not) been reached.

Note:

The second point implies that all nodes in the same information set should have the same
set of feasible actions (otherwise it's possible to differentiate the decision nodes)
In an extensive-form game tree, a collection of decision nodes which constitutes an
information set is connected by a dotted line.
The number of actions listed in a strategy when representing in NF � the number of
unique information sets, e.g. in Example 2.1 there are 2 different information sets for
player 2, so the strategy is , where as in Example 2.2, there are only 1 information set
for player 2, so strategy is  .

With the definition of information set, we can define the game to have imperfect
information if there is at least one nonsingleton information set.

Furthermore, static game of complete information can now be represented as dynamic
games of complete but imperfect information.

L′L′
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Equilibrium vs Outcome

In this game,  is the backwards-induction outcome, whereas  is one
possible Nash equilibrium. Note that:

  is an action, whereas  is a strategy
  is a function and  is the value of function  at 
 In a NE ,  maximize  for all , but  do not necessarily maximize 

. In other words, there can be many NE that is not a backwards-induction
outcome. Example:  in Example 2.1

Similarly, In MA4264 � 2 2 Two-Stage Games of Complete but Imperfect Information, we
have  as the subgame-perfect outcome, and 
as a NE.

2.4 Subgame Perfect NE
Motivation: Bad NE

 in Example 2.1 can be thought of as player 2 threatening to play  if player 1
plays . But even if plays , player 2 will not play  (won't carry out the threat) as it is
suboptimal for him. Hence this threat is not credible.

To rule out bad NE such as , we define a stronger solution called subgame-
perfect NE.

Def 2.4 A subgame in an extensive-form game

 begins at a decision node  that is a singleton information set but is not the game's first
decision node

 includes all the decision and terminal nodes following node  in the game tree.
 doesn't cut any information sets.

In other words, a subgame is a piece of a game that remains to be played beginning at any
point at which the complete history of the game thus far is common knowledge among the
players.

Def 2.5 �Selten, 1965�. A NE is subgame-perfect if the players' strategies constitute a NE in
every subgame.

Remark. It can be shown that any finite dynamic game of complete info has a subgame-
perfect NE, perhaps in mixed strategies.

2.1A Assume the setting of a game where �1� Player 1 chooses an action  from action
space . �2� Player 2 observes  and then chooses an action  from action space .
�3� Payoffs are  and .
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Result.

A NE need not be a subgame-perfect NE.
NE that rely on non-credible threats or promises can be eliminated by the requirement of
subgame perfection.

2.5 Sequential Bargaining
Similar to 2.1A. Let's first analyze a three-preiod bargaining model.

Two players  and  are bargaining over one dollar. They alternate in making offers:

  proposes to take a share  of the dollar, leaving  to .
 If  rejects the proposal,  can then propose to take a share  of the dollar, leaving 

to .
 If  rejects the proposal, then  will receive  of the dollar and  receive  where  is

determined externally.

The catch here is that the players are impatient and they discount payoffs received in later
periods by a factor of  per period. �This makes sense if we account the time-value of
money)

Using backwards induction:

 If we reach the second period,  will propose . �Otherwise  will just reject and
receive  in the third period)

 Since  can solve 's second-period problem, the optimal amount is .

Suppose, we now want to extend this into infinite-period bargaining (Rubinstein's model,
no protracted negotiations) . Let  be the highest possible payoff for , notice that players
can regard these payoffs as a settlement in period 3, and then they play a three-period
game. From the above results, player A should offer . Combining, we have 

.

�T5 Q1� With similar reasoning, if the discount factors are different, namely  for player 1 and
 for player 2, we can show that the backwards-induction outcome is .

Finitely Repeated Games

Def. Given a stage game , let  denote the finitely repeated game in which  is palyed 
 times, with the outcomes of all preceding plays observed before the next play begins. The

payoffs for  are simply sum of the payoffs from the  stage games.

Result.

If the stage game  has a unique NE, then for any finite , the repeated game  has a
unique subgame-perfect outcome: the NE of  played in every stage.

2.6 Infinitely repeated games
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From textbook chapter 2.3A�

Pure-strategy NE  Pareto-dominates NE  if all  players
unanimously prefer  over . Otherwise,  are said to be on the Pareto-frontier of the
game.
The main theme of repeated games (both finite-horizon or infinitely) is that credible
threats or promises about future behavior can influence current behavior.

Def. Let  be the payoff in stage . Given a discount factor  , the present value of

payoffs  is .

Infinitely-repeated game

 In the first stage, the players play stage game  and receive payoffs  and .
 In the -th stage, the players observe the actions chosen in the preceding  stages and

then play  to receive .
 The payoffs of the infinitely repeated game is the present value of the sequence of

payoffs 

Note:

If  has multiple NE, then there maybe subgame-perfect outcomes where the outcome in
stage  is not a NE of 
In an infinitely-repeated game, each subgame is identical to the original game.

Some strategies:

 Non-cooperative strategy: play non-cooperative action  in every stage.
 Trigger strategy: plays a cooperative action  in the first stage. In the -th stage, if the

outcome of all  preceding stages has been  then continue playing . Otherwise,
play non-cooperative action .

Result. If the discount factor  is close enough to 1, then it is a subgame-perfect NE of the
infinitely-repeated game for both players to adopt trigger strategy.

Collusion between Cournot Duopolists

In the Cournot model, both firms produce  with profit .
Each firm colludes to produce  each so that their joint output is the monopoly quantity 

. Profits for each firm is then  (better off than if they both produce ).
If firm  produces , the best response for firm  is to produce  with profit 

.

Let the trigger strategy  be to cooperate in producing  until one of the firms deviates,
and after that producing  forever.

Consider the infinitely-repeated game based on the Cournot stage game with a discount
factor .
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Then  is an NE iff . 
Proof: Suppose firm  has adopted the trigger strategy.

If the quantity other than  has been produced before, then firm  will produce  in this
period. The best response for firm  is to choose  too from this period onwards since 

 is the unique NE for the stage game.

If in all previous stages,  has been produced by both firms, then  is the best response
strategy for firm  only if the present value of deviating , which is the
present value of collaborating (never deviates).

Note: There are further discussion in the textbook on Friedman's Theorem (stated below
without discussion), optimal quantity produced in the case of  and Abreu's two-phase
strategy which can be more optimal than the trigger strategy.

Def.

 a feasible payoff of a stage game  if they are a weighted average of the pure-
strategy payoffs of .
Let the average payoff be  of the present value of payoffs.

Thm. �Friedman, 1971� Let  be a finite, static game of complete information. Let 
denote the payoffs from a NE of . Let  denote any other feasible payoffs. If 

 for every player  and if  is sufficiently close to 1, then there exists a subgame-
perfect NE of the infinitely repeated game with  as stage game that achieves  as
the average payoff.

3 Static Games of Incomplete Information
Games of incomplete information are also called Bayesian games

In such games, at least 1 player is uncertain about another player's payoff function.

3.1 Cournot competition under asymmetric information
Consider the Cournot duopoly model, except that firm 1's cost is  while firm 2's cost is 

 with probability  or  with probability  where  are low cost and high cost,
respectively.

Note that the information is asymmetric : firm 1's cost is known by both, but firm 2's cost
function is only completely known to itself.

The two firms simultaneously choose  where

 maximizes its expected profit  ,
 maximizes 
 maximizes .

The equilibrium of the game is then ,  and 
.
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Remark. Firm 2 produces more than the Cournot quantity under perfect information, i.e. 
, when it gets  because it knows that firm 1 would account for the possibility of 

and hence produce less than if it knows with certainty that firm 2 gets .

3.2 Static Bayesian Games and Bayesian NE
Def 3.1 The normal-form representation of an -player static Bayesian game specifies the
players' action spaces , their type spaces , their beliefs  and
their payoff functions .

Player 's type  is privately known by player 
 determines player 's payoff function .

Player 's belief  describes 's uncertainty about the  players' possible types
 given his own type .

The timing of a static Bayesian game:

 Nature draws a type vector ,  and reveals  to player 
 Players simultaneously choose actions, player  choosing .
 Payoffs  are received.

Suppose Nature draws  from a prior probability distribution . Then the
belief  about other players' types can be computed using Bayes' rule.

Def 3.2 In the static Bayesian game , a strategy for player  is a function .

Remark. Unlike (both static and dynamic) games of complete information, in a Bayesian
game, the strategy spaces are not given in the normal-form representation of the game.

Def 3.3 In the static Bayesian game , the strategies  are a (pure-strategy)
Bayesian NE / BNE if for each player  and for each of 's type , the action  is the
maximizer over  of

Remark. In a general finite (action spaces) static Bayesian game, a Bayesian NE equilibrium
exists, perhaps in mixed strategies.

3.5 First-Price Sealed-Bid Auction
Suppose there are 2 bidders. The bidders' valuations  for a good are independently and
uniformly distributed on �0, 1�. Bidders submit their bids  simultaneously. The higher bidder
wins the good and pays her bidding price; the other bidder gets and pays nothing. In the
case that , the winner is determined by a flip of a coin.

This can be expressed as a static Bayesian game  where 
 (bids ) ;  (valuations );  is the uniform

distribution on �0, 1�. For any , player 's playoff is  =  if ,  if 
, and 0 if . Player 's strategy is a function  from �0, 1� into .
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There may be many BNE of the game. For simplicity, we only look for equilibria in the form of
linear functions:  where . Note that an equilibrium must still
satisfy that it is better than all functions .

Note that since  is a continuous distribution . For any given ,
player 's best response  maximizes . We can also restrict 

. Thus, the player 's best response is  if ,  if 
 and  if .

Since we want the equilibrium strategy  to be a linear function on �0, 1�, there are only 3
cases, i.e. , , or . It is easy to see only the middle case
holds. This leads to .

For  bidders, a strategy with  is a BNE.

The expected revenues for the seller is .

One might wonder whether there are other BNE of this game, and how equilibrium bidding
changes as the distribution of the bidders' valuations changes. Neither of these questions
can be answered using the technique just applied (positing linear strategies and deriving
coefficients).

Under the assumption that the players' strategies are strictyle increasing and differentiable it
can be shown that the unique symmetric BNE is the linear equilibrium already derived.

3.6 Second-Price Sealed-Bid Auction
There are  potential bidders, with valuations  for an object. Bidders know their own
valuation but do not know the other bidders' valuations. The bidders simultaneously submit
bids . The highest bidder wins the object and pays the second highest bid and
the other bidders pay nothing. If more than one bidders bid the highest price, the object is
allocated randomly among them. Let . The bidder 's payoff function is  if 

 is one of  winner(s), and 0 otherwise.

First note that the stategy , i.e. bidding her valuation, weakly dominates any other
strategy . This is because if a player has valuation , the maximum payoff she can receive
regardless of strategy  is .

Proposition 3.1 Let  be strategies in a static Bayesian game. If for any 
, and ,  weakly dominates every , then  is a BNE.

From Proposition 3.1, we conclude that bidding one's valuation is a BNE.

The expected revenues for the seller is .

3.7 Double Auction
There are 2 players: a buyer and a seller. The buyer's valuation for the seller's good is  and
the seller's is . The valuations are private information and are drawn from certain
independent distributions on �0, 1�.
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The seller names an asking price, , and the buyer simultaneously names an offer price .
If , then trade occurs at price ; otherwise, no trade occurs.

There are many BNE of this game, but we will consider 2 types.

One-Price equilibria

For any value  which is given exogeneously and is known to both players, the one-
price strategies are as follows:

The buyer offers  if  and 0 (not trading) otherwise.
The seller demands  if  and 1 (not trading) otherwise.

Given the buyer's strategy, the seller's choices amount to trading at  or not trading. The
seller's strategy is a best response because those seller-types that prefer trading at  do so,
and vice-versa. So these strategies are indeed BNE.

Trade would actually be beneficial for both players at a certain price (i.e. efficient) for all
pairs satisfying . But, it doesn't occur when  or when .

Linear Strategies

Now, we look for linear equilibrium strategies  with  and . Solving
for the maximizer of

, we have . Similarly, we will get .

Therefore the linear equilibrium strategies are  and . The
trade occurs iff , i.e. iff .

Comparison between the 2 strategies

In both cases, the most valuable possible trade, i.e.  and  occurs.
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The one-price equilibrium misses some valuable trades (such as  and  ),
and achieves some trades that are worth next to nothing (such as  and 
)
The linear equilibrium, in contrast, misses all trades worth next to nothing but achieves all
trades worth at least 1/4.
�Myerson, Satterthwaite, 1983� shows that for the uniform valuation distributions, the
linear equilibrium yields higher expected gains for the players than any other BNE of the
double action.

3.8 Mixed Strategies Revisited
A mixed-strategy NE in a game of complete information can almost always be interpreted as
a pure-strategy BNE in a closely related game with a little bit of incomplete information. Put
another way, the crucial feature of a mixed-strategy NE is not that player  chooses a
strategy randomly, but rather that player  is uncertain about player 's choice.

Revisiting Battle of the Sexes game

Suppose Mary and Peter are not completely sure about each other's payoff. If both attend
Opera, Mary's payoff is . If both attend Football, Peter's payoff is , where  is
privately known by Mary and  is privately known by Peter, and  and  are independently
drawn from a uniform distribution on �0, x].

This can be expressed as a static Bayesian game  where 
 = � Opera, Football }; ,  are density functions. In

general, Mary's and Peter's strategies are functions from  to .

Let  be the probability that Mary plays Opera, and  be the probability that Peter plays
Football.

Mary playing Opera is optimal iff , i.e.  if 
and F otherwise.
Peter playing Opera is optimal iff , i.e.  if 
and O otherwise.

At the best responses, all  plays Opera, so . It follows that .
Similarly, . We see that the best response strategy is uniquely defined by a
number, e.g.  is defined by . Hence  or  is BNE when .

If , . Thus, as the incomplete information disappears, the players' behavior
in this pure-strategy BNE of the incomplete-information game approaches their behavior in
the mixed-strategy NE in the original game of complete information.

4 Dynamic Games of Incomplete
Information
Motivation.
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There are 2 NE�  and  . Both are also subgame-perfect NE as there is no
subgames. However  is still based on a non-credible threat and we would like to
eliminate such NE.

A good solution in a dynamic game should choose an "optimal" action in every stage.
However, in the above game, player 2 doesn't know which node in the information set is
reached → doesn't know which payoff to use to choose an optimal action. So, we assume
that player 2 has a belief about probabilities with which nodes in the information set are
reached, and we calculate the expected payoff based on this probability distribution.

Assume player 2 believe that  has been played by player 1 with probability . For all values
of ,  dominated  for player 2, hence  is not optimal and can be eliminated.

In the above example,  is the unique maximizer. Usually however, different beliefs may
result in different optimal actions. To guarantee that these "optimal" actions are desirable,
our belief must be consistent with all players' strategies (by Bayes' rule)

Definition. A subsequent strategy is a complete plan of action covering every contingency
that might arise after the given information set is reached.

Def 4.1 A perfect Bayesian equilibrium �PBE� consists of strategies and beliefs satisfying:

 Given their beliefs, the players' strategies must be sequentially rational. In other words: At
each information set, given the player's belief and other players' subsequent strategies,
the action taken by the player with the move (and the player's subsequent strategy) must
be optimal.

 At every information set, beliefs are determined by Bayes' rule and the players' strategies
whenever possible.

Remark.

The strategy profile in any PBE is a NE.
If an information set is not reached by a strategy, the belief can take any value.

4.2 Signaling Games

(L,L′) (R,R′)

(R,R′)

L p

p L′ R′ (R,R′)

L′



A signaling game is a dynamic game of incomplete information involving 2 players: a sender 
, and a receiver . The timing of the game is as follows:

 Nature draws a type  for the Sender from a set of feasible types 
according a probability distribution .

 The sender observes  and chooses a message 
 The receiver observes  (but not ) and chooses an action .
 Payoffs are given by  and .

Consider a simple signaling game .

The Sender has 4 strategies:  with  where  means that the Sender
sends  if Nature draws  and sends  if Nature draws . We call 
strategies pooling and  strategies separating.

The Receiver has 4 strategies:  with  where  means that the Receiver
plays  if the Sender sends  and plays  if the Sender sends 

After observing any message  , R must have a belief  about which types could
have sent .

Sequential rationality:

For each , R's action  maximizes R's expected utility given the belief , i.e. 
.

Similarly, for each , S's message  must maximizes .

Consistency: Given S' optimal strategy , let  be all types  for which . If 
,  can take any value. Otherwise 

Def 4.2 A pure-strategy PBE in a signaling game is a pair of strategies  and  and
a belief  satisfying the sequential rationality and consistency.

4.3 Job-Market Signaling
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In the model of job-market signaling, the sender is a worker, the receiver is the market of
prospective employers, the type is the worker's productive ability  (high:  or low: ) with
equal probability chosen by Nature, the message is the worker's education choice  (college:

 or school: ), and the action is the wage  paid by the market (high:  or low: ).

The payoffs are

 to the worker where  is the cost to a worker with ability  of obtaining
education .

 to the firm that employs the worker, where  is the output of a worker
with ability  who has obtained education . �The rational for this payoff is : competition
among firms will drive expected profits to zero, and implies that wage should equal
production output in the market).

Prop 4.1. Let . Assume that the workers' payoffs from playing  and 
respectively are different. Then, there does not exist separating PBE.

4.5 Sequential Bargaining under Asymmetric Information

A firm and a union bargaining over wages. The amount union members earn if not employed
by the firm is . The firm's profit  is uniformly distributed on  but the true value of 
is privately known by the firm. The following analysis is simplified by assuming .

The bargaining game lasts at most 2 periods.

 In the first period, the union makes a wage offer . If the firm accepts, the game ends:
the union's payoff is  and the firm's is .

 In the second period, the union makes a second wage offer  (only if  is rejected). If
the firm accepts, then the union's payoff is the present values of its payoff , and 

 for the firm, where  reflects both discounting and the reduced life of the
contract remaining after the first period. Otherwise, both sides gets 0.

The unique PBE of this game:

The union's first-period wage offer maximizes  Prob( firm accepts  ) +  Prob( firm
rejects  but accepts  ). It is given as .
If the firm's profit  exceeds , then the firm accepts ; otherwise it rejects.
If the first-period offer is rejected, the union updates its belief about the firm's profit: the
union now believes that  is uniformly distributed on  and offer 
If the firm's profit  exceeds , the firm accepts; otherwise it rejects.

5 Cooperative Games
In cooperative games binding agreements may be made among the players. In addition, we
assume that all payoffs are measured in the same units and that there is a transferrable
utility which allows side payments to be made among the players.

Side payments may be used as inducements for some players to use certain mutually
beneficial strategies. Thus, there will be a tendency for players, who have similar objectives
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in the game, to form alliances or coalitions. Players in a coalition will collectively generate a
payoff to the coalition. Thus, the central issue is to find a fair distribution of payoffs among
players.

5.1 Two-Person Cooperative Games

 is constructed as pair of each players' utility functions.
There is, generally, a set of outcomes, called the feasible set which can be obtained by
the 2 players by acting together, e.g. .
The threat point (or status quo or no trade point)  is the outcome that is obtained in
the absence of trade. This is the amount that each player will obtain by unilateral action,
whatever the other player does, i.e. the maximin value of the game for that player.

Def 5.1 The pair  is a two-person bargaining game if  is compact and
convex,  and  contains at least one element such that  .

Def 5.2 Let  and  be 2 payoff pairs. We say  dominates  if  and 
. Payoff pairs which are not dominated by another pair are said to be Pareto optimal

Among all feasible outcome of the game, we find that the more 1 player gets, the less the
other player will be able to get (though not necessarily so). Now, how much will one player
be willing to give the other? How little will he be willing to accept as the price of his
cooperation?

So given a set  and its maximin values , we want a rule which assign a "bargaining
solution". While the outcome of any particular case will depend on the personalities and
bargaining abilities of the 2 players, the axioms in the following definition is reasonable.

Denote the set of all two-person bargaining games as .

Def 5.3 The Nash bargaining solution is a mapping  such that 
 satisfying the following axioms:

 Feasibility: 
 Individual Rationality:  for all .
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 Pareto Optimality:  is Pareto optimal.
 Invariance under Linear Transformations: Let  ,  and 

where  and . Then, .
 Symmetry: If  satisfies  and  implies , then 

.
 Independence of Irrelevant Alternatives: If  and 

, then .

Thm 5.1 A game  has a unique Nash solution  satisfying conditions 1�6
iff  for all  and .

5.2 n-person Cooperative Games
In the noncooperative case, -person games is merely a generalization of the 2-person
case. In cooperative games, however, a new idea appears: coalitions.

In two-person games, there is only 1 possible coalition. In the -person games, there are
many possible coalitions → different members of the coalition must reach some sort of
equilibrium or stability.

Consider the three-person game, where if any 2 of them succeed in forming a coalition, then
the third player must pay each of them 1 unit. If no 2-player coalition is formed, then there is
no payoff at all. Here,  seem to be a "natural" result. The payoff 

 is also some sort of solution to the game.

Now let us suppose that if the coalition  is formed, player 1 must pay 1.1 units to 2 and
0.9 unit to 3. This would seem to improve 2's outlook, however now 3 is incentivized to form
coalition  instead � 2 is in a worse position than before. To remedy this, he might give
a side payment of 0.1 unit to 3.

Def 5.4 For an -person game with the set of players , any nonempty subset
of  (including  itself) is called a coalition. For each coalition , the characteristic
function  of the game gives the amount  that the coalition  can be sure of receiving.
The game is denoted by .

Assumption 5.1 We assume the characteristic function  satisfies

 .
 Super-additivity: For any disjoint coalitions , .

Remark. We can view  as the amount of utility that members of  can obtain from the
game, whatever the remaining players may do.

Without inquiring into the particular coalition structure obtained, we would like to know the
possible (and fair) payoff vectors, i.e. how the total utility  of the  players should be
divided.

Def 5.5 An imputation in the game  is a payoff vector  satisfying

 Group Rational: .
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 Individually Rational: .

Let  denote the set of all imputations of the game .

Def 5.6 Let  and let  be a coalition.  dominates  via  ( ) if

  for all  �Read: all members of S prefers  over )
 . �Read: S are capable of obtaining )

 dominates  ( ) if there is any coalition  s.t. .

Remark:

Given  and  are both imputations, i.e. have the same sum of components, there will be
players who prefer  to  and others who prefer  to . Hence, it is not possible to achieve
consensus. What is needed is that the players who prefer  to  be actually strong enough
to enforce the choice of .
A dominated imputation  is unstable. If , members in  can gain  instead of  if
they form coalition .

Def 5.7 The set of all undominated imputations for a game  is called the core, denoted
by .

Thm 5.2  is the set of all -vectors  satisfying

  for all .

 .

Remark. The core of the game  is nonempty iff  such that 

for every .

Some Special Games

Def 5.8 A game  is constant-sum if for all , .

Def 5.9 A game  is essential if . It is inessential otherwise. 

Thm 5.3 If  is an inessential game, then for any coalition , . 

Corollary. If  is inessential, then it is constant sum.

Thm 5.4 If a game  is constant-sum, then its core is either empty or a singleton 
.

Collorary. If  is an inessential game, then , is a singleton.

Remark. Called "inessential" because only 1 reachable imputation. Can be interpreted as
coalitions doesn't make the returns better anyway �D

Collorary. If  is both essential and constant-sum, then its core is empty.
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Strategical Equivalence

Def 5.10 Two games  and  are strategically equivalent if there exist constants  and 
 such that for every coalition , .

Remark. If 2 games are strategically equivalent, we can obtain one from another simply by
performing a linear transformation on the utility spaces of the players.

Lemma 5.1 Suppose that  and  are strategically equivalent following Def 5.10.

  is in(essential) iff  is (in)essential.
  is an imputation for  iff  is an imputation for , where .
  (w.r.t. ) iff  (w.r.t. ).
  iff .

Def 5.11 A characteristic function  is in -reduced form if  for all  and 
.

Special types of games:

Symmetric games if  depends only on the number of elements in .
Simple games if for each coalition , we have either  (losing) or 
(winning), e.g. "voting" games in elections.

Thm 5.5 Any essential game  is strategically equivalent to a game  in -
reduced form.

Take  and .

Thm 5.6 Classification of small essential games in -reduced form.

Two-person game: .
Three-person constant-sum game. .
Three-person game: There exists  such that 

.

Generally the set of -person games in -reduced form is the set of functions  defined
on the subsets of  such that  and satisfies super-additivity.

The Shapley Value

Given any -person game  , the Shapley value is an -vector, denoted by  ,
satisfying the -th component of  can be uniquely determined by

Explanation: Players come randomly. If -th player arrives and finds the members of the
coalition  already there (this event has probability ), he joins the coalition and
receives the amount , i.e. the marginal amount which he contributes to the
coalition, as payoff.
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Proposition. The Shapley value has the following desirable properties

 Individual rationality:  for all .
 Efficiency: The total gain is distributed, i.e. 

 Dummy: If a player  such that  for every  where , then .
 Symmetry: If players  and  are such that  for every coalition S

where  , then .
 Additivity: If  and  are characteristic functions, then .

Example 5.5 �The Shapley value of ) . Given , define a game  if 
and 0 otherwise. Then the Shapley value is  for all  and 0 otherwise.
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